本文整理匯總了Python中bokeh.plotting.ColumnDataSource方法的典型用法代碼示例。如果您正苦於以下問題:Python plotting.ColumnDataSource方法的具體用法?Python plotting.ColumnDataSource怎麽用?Python plotting.ColumnDataSource使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bokeh.plotting
的用法示例。
在下文中一共展示了plotting.ColumnDataSource方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: prepare_bls_datasource
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_bls_datasource(result, loc):
"""Prepare a bls result for bokeh plotting
Parameters
----------
result : BLS.model result
The BLS model result to use
loc : int
Index of the "best" period. (Usually the max power)
Returns
-------
bls_source : Bokeh.plotting.ColumnDataSource
Bokeh style source for plotting
"""
bls_source = ColumnDataSource(data=dict(
period=result['period'],
power=result['power'],
depth=result['depth'],
duration=result['duration'],
transit_time=result['transit_time']))
bls_source.selected.indices = [loc]
return bls_source
示例2: prepare_folded_datasource
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_folded_datasource(folded_lc):
"""Prepare a FoldedLightCurve object for bokeh plotting.
Parameters
----------
folded_lc : lightkurve.FoldedLightCurve
The folded lightcurve
Returns
-------
folded_source : Bokeh.plotting.ColumnDataSource
Bokeh style source for plotting
"""
folded_src = ColumnDataSource(data=dict(
phase=np.sort(folded_lc.time),
flux=folded_lc.flux[np.argsort(folded_lc.time)]))
return folded_src
# Helper functions for help text...
示例3: prepare_tpf_datasource
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_tpf_datasource(tpf, aperture_mask):
"""Prepare a bokeh DataSource object for selection glyphs
Parameters
----------
tpf : TargetPixelFile
TPF to be shown.
aperture_mask : boolean numpy array
The Aperture mask applied at the startup of interact
Returns
-------
tpf_source : bokeh.plotting.ColumnDataSource
Bokeh object to be shown.
"""
npix = tpf.flux[0, :, :].size
pixel_index_array = np.arange(0, npix, 1).reshape(tpf.flux[0].shape)
xx = tpf.column + np.arange(tpf.shape[2])
yy = tpf.row + np.arange(tpf.shape[1])
xa, ya = np.meshgrid(xx, yy)
tpf_source = ColumnDataSource(data=dict(xx=xa.astype(float), yy=ya.astype(float)))
tpf_source.selected.indices = pixel_index_array[aperture_mask].reshape(-1).tolist()
return tpf_source
示例4: get_lightcurve_y_limits
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def get_lightcurve_y_limits(lc_source):
"""Compute sensible defaults for the Y axis limits of the lightcurve plot.
Parameters
----------
lc_source : bokeh.plotting.ColumnDataSource
The lightcurve being shown.
Returns
-------
ymin, ymax : float, float
Flux min and max limits.
"""
with warnings.catch_warnings(): # Ignore warnings due to NaNs
warnings.simplefilter("ignore", AstropyUserWarning)
flux = sigma_clip(lc_source.data['flux'], sigma=5, masked=False)
low, high = np.nanpercentile(flux, (1, 99))
margin = 0.10 * (high - low)
return low - margin, high + margin
示例5: create_bar_plot
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def create_bar_plot(init_data, title):
init_data = downsample(init_data, 50)
x = range(len(init_data))
source = ColumnDataSource(data=dict(x= [], y=[]))
fig = figure(title=title, plot_width=300, plot_height=300)
fig.vbar(x=x, width=1, top=init_data, fill_alpha=0.05)
fig.vbar('x', width=1, top='y', fill_alpha=0.3, source=source)
fig.y_range = Range1d(min(0, 1.2 * min(init_data)), 1.2 * max(init_data))
return fig, source
示例6: create_hist_plot
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def create_hist_plot(init_data, title):
source = ColumnDataSource(data=dict(hist=[], left_edge=[], right_edge=[]))
init_hist, init_edge = np.histogram(init_data, density=True, bins=50)
fig = figure(title=title, plot_width=300, plot_height=300)
fig.quad(top=init_hist, bottom=0, left=init_edge[:-1], right=init_edge[1:],
fill_alpha=0.05)
fig.quad(top='hist', bottom=0, left='left_edge', right='right_edge',
fill_alpha=0.3, source=source)
return fig, source
示例7: prepare_bls_help_source
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_bls_help_source(bls_source, slider_value):
data = dict(period=[bls_source.data['period'][int(slider_value*0.95)]],
power=[(np.max(bls_source.data['power']) - np.min(bls_source.data['power'])) * 0.98 + np.min(bls_source.data['power'])],
helpme=['?'],
help=["""
<div style="width: 375px;">
<div style="height: 190px;">
</div>
<div>
<span style="font-size: 12px; font-weight: bold;">Box Least Squares Periodogram</span>
</div>
<div>
<span style="font-size: 11px;"">This panel shows the BLS periodogram for
the light curve shown in the lower panel.
The current selected period is highlighted by the red line.
The selected period is the peak period within the range.
The Folded Light Curve panel [right] will update when a new period
is selected in the BLS Panel. You can select a new period either by
using the Box Zoom tool to select a smaller range, or by clicking on the peak you want to select. </span>
<br></br>
<span style="font-size: 11px;"">The panel is set at the resolution
given by the Resolution Slider [bottom]. This value is the number
of points in the BLS Periodogram panel.
Increasing the resolution will make the BLS Periodogram more accurate,
but slower to render. To increase the resolution for a given peak,
simply zoom in with the Box Zoom Tool.</span>
</div>
</div>
"""])
return ColumnDataSource(data=data)
示例8: prepare_f_help_source
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_f_help_source(f):
data = dict(phase=[(np.max(f.time) - np.min(f.time)) * 0.98 + np.min(f.time)],
flux=[(np.max(f.flux) - np.min(f.flux)) * 0.98 + np.min(f.flux)],
helpme=['?'],
help=["""
<div style="width: 375px;">
<div style="height: 190px;">
</div>
<div>
<span style="font-size: 12px; font-weight: bold;">Folded Light Curve</span>
</div>
<div>
<span style="font-size: 11px;"">This panel shows the folded light curve,
using the period currently selected in the BLS panel [left], indicated by the red line.
The transit model is show in red, and duration of the transit model
is given by the duration slider below. Update the slider to change the duration.
The period and transit midpoint values of the model are given above this panel.</span>
<br></br>
<span style="font-size: 11px;"">If the folded transit looks like a near miss of
the true period, try zooming in on the peak in the BLS Periodogram panel [right]
with the Box Zoom tool. This will increase the resolution of the peak, and provide
a better period solution. You can also vary the transit duration, for a better fit.
If the transit model is too shallow, it may be that you have selected a harmonic.
Look in the BLS Periodogram for a peak at (e.g. 0.25x, 0.5x, 2x, 4x the current period etc).</span>
</div>
</div>
"""])
return ColumnDataSource(data=data)
示例9: test_ylim_with_nans
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def test_ylim_with_nans():
"""Regression test for #679: y limits should not be NaN."""
lc_source = ColumnDataSource({'flux': [-1, np.nan, 1]})
ymin, ymax = get_lightcurve_y_limits(lc_source)
# ymin/ymax used to return nan, make sure this is no longer the case
assert ymin == -1.176
assert ymax == 1.176
示例10: prepare_lightcurve_datasource
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def prepare_lightcurve_datasource(lc):
"""Prepare a bokeh ColumnDataSource object for tool tips.
Parameters
----------
lc : LightCurve object
The light curve to be shown.
Returns
-------
lc_source : bokeh.plotting.ColumnDataSource
"""
# Convert time into human readable strings, breaks with NaN time
# See https://github.com/KeplerGO/lightkurve/issues/116
if (lc.time == lc.time).all():
human_time = lc.time.isot
else:
human_time = [' '] * len(lc.flux)
# Convert binary quality numbers into human readable strings
qual_strings = []
for bitmask in lc.quality:
if isinstance(bitmask, u.Quantity):
bitmask = bitmask.value
flag_str_list = KeplerQualityFlags.decode(bitmask)
if len(flag_str_list) == 0:
qual_strings.append(' ')
if len(flag_str_list) == 1:
qual_strings.append(flag_str_list[0])
if len(flag_str_list) > 1:
qual_strings.append("; ".join(flag_str_list))
lc_source = ColumnDataSource(data=dict(
time=lc.time.value,
time_iso=human_time,
flux=lc.flux.value,
cadence=lc.cadenceno.value,
quality_code=lc.quality.value,
quality=np.array(qual_strings)))
return lc_source
示例11: update
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def update():
# Compute new y values: y
y = np.sin(x) + np.random.random(N)
# Update the ColumnDataSource data dictionary
source.data = {'x': x, 'y': y}
# Add the update callback to the button
開發者ID:qalhata,項目名稱:Python-Scripts-Repo-on-Data-Science,代碼行數:11,代碼來源:DatVis_Bokeh_Intr_App_Build_4.py
示例12: plot_bokeh
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def plot_bokeh(df,sublist,filename):
lenlist=[0]
df_sub = df[df['cuisine']==sublist[0]]
lenlist.append(df_sub.shape[0])
for cuisine in sublist[1:]:
temp = df[df['cuisine']==cuisine]
df_sub = pd.concat([df_sub, temp],axis=0,ignore_index=True)
lenlist.append(df_sub.shape[0])
df_X = df_sub.drop(['cuisine','recipeName'],axis=1)
print df_X.shape, lenlist
dist = squareform(pdist(df_X, metric='cosine'))
tsne = TSNE(metric='precomputed').fit_transform(dist)
#cannot use seaborn palette for bokeh
palette =['red','green','blue','yellow']
colors =[]
for i in range(len(sublist)):
for j in range(lenlist[i+1]-lenlist[i]):
colors.append(palette[i])
#plot with boken
output_file(filename)
source = ColumnDataSource(
data=dict(x=tsne[:,0],y=tsne[:,1],
cuisine = df_sub['cuisine'],
recipe = df_sub['recipeName']))
hover = HoverTool(tooltips=[
("cuisine", "@cuisine"),
("recipe", "@recipe")])
p = figure(plot_width=1000, plot_height=1000, tools=[hover],
title="flavor clustering")
p.circle('x', 'y', size=10, source=source,fill_color=colors)
show(p)
示例13: _scatter
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def _scatter(self, p, source, views, markers):
"""
Parameters
----------
p: bokeh.plotting.figure
figure
source: ColumnDataSource
data container
views: List[CDSView]
list with views to be plotted (in order!)
markers: List[str]
corresponding markers to the views
Returns
-------
scatter_handles: List[GlyphRenderer]
glyph renderer per view
"""
scatter_handles = []
for view, marker in zip(views, markers):
scatter_handles.append(p.scatter(x='x', y='y',
source=source,
view=view,
color='color', line_color='black',
size='size',
marker=marker,
))
return scatter_handles
示例14: jitterCurve
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def jitterCurve():
output_file("PHmi_01.html")
source=ColumnDataSource(data=dict(
x=LandmarkMap_dic[1][0].tolist(),
y=LandmarkMap_dic[1][1].tolist(),
desc=[str(i) for i in list(range(LandmarkMap_dic[1][0].shape[0]))],
))
TOOLTIPS=[
("index", "$index"),
("(x,y)", "($x, $y)"),
("desc", "@desc"),
]
p=figure(plot_width=1800, plot_height=320, tooltips=TOOLTIPS,title="partition")
p.circle('y','x', size=5, source=source)
p.line(PHMI_dic[0][1],PHMI_dic[0][0],line_color="coral", line_dash="dotdash", line_width=2)
colors=('aliceblue', 'antiquewhite', 'aqua', 'aquamarine', 'azure', 'beige', 'bisque', 'black', 'blanchedalmond', 'blue', 'blueviolet', 'brown', 'burlywood', 'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue', 'cornsilk', 'crimson', 'cyan', 'darkblue', 'darkcyan', 'darkgoldenrod', 'darkgray', 'darkgreen', 'darkgrey', 'darkkhaki', 'darkmagenta', 'darkolivegreen', 'darkorange', 'darkorchid', 'darkred', 'darksalmon', 'darkseagreen', 'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise', 'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey', 'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'fuchsia', 'gainsboro', 'ghostwhite', 'gold', 'goldenrod', 'gray', 'green', 'greenyellow', 'grey', 'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender', 'lavenderblush', 'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan', 'lightgoldenrodyellow', 'lightgray', 'lightgreen', 'lightgrey', 'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'lightslategrey', 'lightsteelblue', 'lightyellow', 'lime', 'limegreen', 'linen', 'magenta', 'maroon', 'mediumaquamarine', 'mediumblue', 'mediumorchid', 'mediumpurple', 'mediumseagreen', 'mediumslateblue', 'mediumspringgreen', 'mediumturquoise', 'mediumvioletred', 'midnightblue', 'mintcream', 'mistyrose', 'moccasin', 'navajowhite', 'navy', 'oldlace', 'olive', 'olivedrab', 'orange', 'orangered', 'orchid', 'palegoldenrod', 'palegreen', 'paleturquoise', 'palevioletred', 'papayawhip', 'peachpuff', 'peru', 'pink', 'plum', 'powderblue', 'purple', 'red', 'rosybrown', 'royalblue', 'saddlebrown', 'salmon', 'sandybrown', 'seagreen', 'seashell', 'sienna', 'silver', 'skyblue', 'slateblue', 'slategray', 'slategrey', 'snow', 'springgreen', 'steelblue', 'tan', 'teal', 'thistle', 'tomato', 'turquoise', 'violet', 'wheat', 'white', 'whitesmoke', 'yellow', 'yellowgreen')
ScalePhmi=math.pow(10,1)
i=0
for val,idx in zip(phmi_breakPtsNeg, plot_x):
p.line(idx,np.array(val)*ScalePhmi,line_color=colors[i])
i+=1
show(p)
#05-network show between PHMI and landmarks 網絡分析
#extract landmarks corresponding to the AVs' position along a route
示例15: jitterCurve
# 需要導入模塊: from bokeh import plotting [as 別名]
# 或者: from bokeh.plotting import ColumnDataSource [as 別名]
def jitterCurve(phmi_breakPtsNeg,landmarks_coordi,PHMI_coordi,plot_x): #LandmarkMap_dic,PHMI_dic
output_file("PHmi_01.html")
source=ColumnDataSource(data=dict(
x=landmarks_coordi[0].tolist(),
y=landmarks_coordi[1].tolist(),
desc=[str(i) for i in list(range(landmarks_coordi[0].shape[0]))],
))
TOOLTIPS=[
("index", "$index"),
("(x,y)", "($x, $y)"),
("desc", "@desc"),
]
p=figure(plot_width=1800, plot_height=320, tooltips=TOOLTIPS,title="partition")
p.circle('y','x', size=5, source=source)
p.line(PHMI_coordi[1],PHMI_coordi[0],line_color="coral", line_dash="dotdash", line_width=2)
colors=('aliceblue', 'antiquewhite', 'aqua', 'aquamarine', 'azure', 'beige', 'bisque', 'black', 'blanchedalmond', 'blue', 'blueviolet', 'brown', 'burlywood', 'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue', 'cornsilk', 'crimson', 'cyan', 'darkblue', 'darkcyan', 'darkgoldenrod', 'darkgray', 'darkgreen', 'darkgrey', 'darkkhaki', 'darkmagenta', 'darkolivegreen', 'darkorange', 'darkorchid', 'darkred', 'darksalmon', 'darkseagreen', 'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise', 'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey', 'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'fuchsia', 'gainsboro', 'ghostwhite', 'gold', 'goldenrod', 'gray', 'green', 'greenyellow', 'grey', 'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender', 'lavenderblush', 'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan', 'lightgoldenrodyellow', 'lightgray', 'lightgreen', 'lightgrey', 'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'lightslategrey', 'lightsteelblue', 'lightyellow', 'lime', 'limegreen', 'linen', 'magenta', 'maroon', 'mediumaquamarine', 'mediumblue', 'mediumorchid', 'mediumpurple', 'mediumseagreen', 'mediumslateblue', 'mediumspringgreen', 'mediumturquoise', 'mediumvioletred', 'midnightblue', 'mintcream', 'mistyrose', 'moccasin', 'navajowhite', 'navy', 'oldlace', 'olive', 'olivedrab', 'orange', 'orangered', 'orchid', 'palegoldenrod', 'palegreen', 'paleturquoise', 'palevioletred', 'papayawhip', 'peachpuff', 'peru', 'pink', 'plum', 'powderblue', 'purple', 'red', 'rosybrown', 'royalblue', 'saddlebrown', 'salmon', 'sandybrown', 'seagreen', 'seashell', 'sienna', 'silver', 'skyblue', 'slateblue', 'slategray', 'slategrey', 'snow', 'springgreen', 'steelblue', 'tan', 'teal', 'thistle', 'tomato', 'turquoise', 'violet', 'wheat', 'white', 'whitesmoke', 'yellow', 'yellowgreen')
colors=colors*5
ScalePhmi=math.pow(10,1)
i=0
for val,idx in zip(phmi_breakPtsNeg, plot_x):
p.line(idx,np.array(val)*ScalePhmi,line_color=colors[i])
i+=1
show(p)
#04-network show between PHMI and landmarks 網絡分析
#extract landmarks corresponding to the AVs' position along a route
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:31,代碼來源:driverlessCityProject_spatialPointsPattern_association_basic.py