本文整理匯總了Python中PIL.ImageOps.crop方法的典型用法代碼示例。如果您正苦於以下問題:Python ImageOps.crop方法的具體用法?Python ImageOps.crop怎麽用?Python ImageOps.crop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類PIL.ImageOps
的用法示例。
在下文中一共展示了ImageOps.crop方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_cropped_tiles
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def get_cropped_tiles(img, border=112):
new_im = ImageOps.crop(Image.fromarray(img), border=border)
paddedimg = np.array(new_im)
padded_tiles = get_tile_images(paddedimg)
return padded_tiles
示例2: find_objects
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def find_objects(model, tiles, extent, crop=(0, 0, 0, 0), cycle=1):
xmin = extent['xmin'] + crop[0]
ymin = extent['ymin'] + crop[1]
xmax = extent['xmax'] - crop[2]
ymax = extent['ymax'] - crop[3]
img_normed = norm(tiles)
clas, bbox = predict_(model, img_normed.transpose(0, 3, 1, 2))
preds = { }
for idx in range(bbox.size()[0]):
preds[idx] = get_nms_preds(clas, bbox, idx, anchors)
w, h = 90, 90
pools = []
numboxes = bbox.size()[0]
side = math.sqrt(numboxes)
for idx in range(numboxes):
i, j = idx//side, idx%side
x = xmin + (j)*w
y = ymax - (i+1)*h
for pred in preds[idx]:
objx = x + ((pred['x1'] + pred['x2']) / 2)*w
objy = y + h - ((pred['y1'] + pred['y2']) / 2)*h
pools.append({'x': objx, 'y': objy, 'category': pred['category'], 'score': pred['score']})
if len(pools) > 0:
result = project(geometries=pools, in_sr=3857, out_sr=4326)
for i, p in enumerate(pools):
p['SHAPE'] = dict(result[i])
p['cycle'] = cycle
return pools
示例3: detect_objects
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def detect_objects(model, tiles, extent, crop=(0, 0, 0, 0), cycle=1):
xmin = extent['xmin'] + crop[0]
ymin = extent['ymin'] + crop[1]
xmax = extent['xmax'] - crop[2]
ymax = extent['ymax'] - crop[3]
img_normed = norm(tiles)
clas, bbox = predict_(model, img_normed.transpose(0, 3, 1, 2))
preds = { }
for idx in range(bbox.size()[0]):
preds[idx] = get_nms_preds(clas, bbox, idx, anchors)
w, h = 90, 90
pools = []
numboxes = bbox.size()[0]
side = math.sqrt(numboxes)
for idx in range(numboxes):
i, j = idx//side, idx%side
x = xmin + (j)*w # 0 + j*224
y = ymax - (i+1)*h
for pred in preds[idx]:
objx = x + ((pred['x1'] + pred['x2']) / 2)*w
objy = y + h - ((pred['y1'] + pred['y2']) / 2)*h
pools.append({'x': objx, 'y': objy, 'category': pred['category'], 'score': pred['score']})
if len(pools) > 0:
#result = project(geometries=pools, in_sr=3857, out_sr=4326)
for i, p in enumerate(pools):
#p['SHAPE'] = dict(result[i])
p['cycle'] = cycle
return pools
示例4: load_image
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def load_image(file_path, input_height=128, input_width=None, output_height=128, output_width=None,
crop_height=None, crop_width=None, is_random_crop=True, is_mirror=True, is_gray=False):
if input_width is None:
input_width = input_height
if output_width is None:
output_width = output_height
if crop_width is None:
crop_width = crop_height
img = Image.open(file_path)
if is_gray is False and img.mode is not 'RGB':
img = img.convert('RGB')
if is_gray and img.mode is not 'L':
img = img.convert('L')
if is_mirror and random.randint(0,1) is 0:
img = ImageOps.mirror(img)
if input_height is not None:
img = img.resize((input_width, input_height),Image.BICUBIC)
if crop_height is not None:
[w, h] = img.size
if is_random_crop:
#print([w,cropSize])
cx1 = random.randint(0, w-crop_width)
cx2 = w - crop_width - cx1
cy1 = random.randint(0, h-crop_height)
cy2 = h - crop_height - cy1
else:
cx2 = cx1 = int(round((w-crop_width)/2.))
cy2 = cy1 = int(round((h-crop_height)/2.))
img = ImageOps.crop(img, (cx1, cy1, cx2, cy2))
img = img.resize((output_width, output_height),Image.BICUBIC)
return img
示例5: load_video_image
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def load_video_image(file_path, input_height=128, input_width=None, output_height=128, output_width=None,
crop_height=None, crop_width=None, is_random_crop=True, is_mirror=True,
is_gray=False, scale=1.0, is_scale_back=False):
if input_width is None:
input_width = input_height
if output_width is None:
output_width = output_height
if crop_width is None:
crop_width = crop_height
img = Image.open(file_path)
if is_gray is False and img.mode is not 'RGB':
img = img.convert('RGB')
if is_gray and img.mode is not 'L':
img = img.convert('L')
if is_mirror and random.randint(0,1) is 0:
img = ImageOps.mirror(img)
if input_height is not None:
img = img.resize((input_width, input_height),Image.BICUBIC)
if crop_height is not None:
[w, h] = img.size
if is_random_crop:
#print([w,cropSize])
cx1 = random.randint(0, w-crop_width)
cx2 = w - crop_width - cx1
cy1 = random.randint(0, h-crop_height)
cy2 = h - crop_height - cy1
else:
cx2 = cx1 = int(round((w-crop_width)/2.))
cy2 = cy1 = int(round((h-crop_height)/2.))
img = ImageOps.crop(img, (cx1, cy1, cx2, cy2))
#print(scale)
img = img.resize((output_width, output_height),Image.BICUBIC)
img_lr = img.resize((int(output_width/scale),int(output_height/scale)),Image.BICUBIC)
if is_scale_back:
return img_lr.resize((output_width, output_height),Image.BICUBIC), img
else:
return img_lr, img
示例6: test_sanity
# 需要導入模塊: from PIL import ImageOps [as 別名]
# 或者: from PIL.ImageOps import crop [as 別名]
def test_sanity(self):
ImageOps.autocontrast(hopper("L"))
ImageOps.autocontrast(hopper("RGB"))
ImageOps.autocontrast(hopper("L"), cutoff=10)
ImageOps.autocontrast(hopper("L"), ignore=[0, 255])
ImageOps.colorize(hopper("L"), (0, 0, 0), (255, 255, 255))
ImageOps.colorize(hopper("L"), "black", "white")
ImageOps.pad(hopper("L"), (128, 128))
ImageOps.pad(hopper("RGB"), (128, 128))
ImageOps.crop(hopper("L"), 1)
ImageOps.crop(hopper("RGB"), 1)
ImageOps.deform(hopper("L"), self.deformer)
ImageOps.deform(hopper("RGB"), self.deformer)
ImageOps.equalize(hopper("L"))
ImageOps.equalize(hopper("RGB"))
ImageOps.expand(hopper("L"), 1)
ImageOps.expand(hopper("RGB"), 1)
ImageOps.expand(hopper("L"), 2, "blue")
ImageOps.expand(hopper("RGB"), 2, "blue")
ImageOps.fit(hopper("L"), (128, 128))
ImageOps.fit(hopper("RGB"), (128, 128))
ImageOps.flip(hopper("L"))
ImageOps.flip(hopper("RGB"))
ImageOps.grayscale(hopper("L"))
ImageOps.grayscale(hopper("RGB"))
ImageOps.invert(hopper("L"))
ImageOps.invert(hopper("RGB"))
ImageOps.mirror(hopper("L"))
ImageOps.mirror(hopper("RGB"))
ImageOps.posterize(hopper("L"), 4)
ImageOps.posterize(hopper("RGB"), 4)
ImageOps.solarize(hopper("L"))
ImageOps.solarize(hopper("RGB"))
ImageOps.exif_transpose(hopper("L"))
ImageOps.exif_transpose(hopper("RGB"))