本文整理匯總了Python中cv2.IMREAD_COLOR屬性的典型用法代碼示例。如果您正苦於以下問題:Python cv2.IMREAD_COLOR屬性的具體用法?Python cv2.IMREAD_COLOR怎麽用?Python cv2.IMREAD_COLOR使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類cv2
的用法示例。
在下文中一共展示了cv2.IMREAD_COLOR屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: validate_on_lfw
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def validate_on_lfw(model, lfw_160_path):
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs('validation-LFW-pairs.txt')
# Get the paths for the corresponding images
paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
num_pairs = len(actual_issame)
all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
for k in tqdm.trange(num_pairs):
img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
batch = np.stack([img1, img2], axis=0)
embeddings = model.eval_embeddings(batch)
all_embeddings[k * 2: k * 2 + 2, :] = embeddings
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)
print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
auc = metrics.auc(fpr, tpr)
print('Area Under Curve (AUC): %1.3f' % auc)
eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
print('Equal Error Rate (EER): %1.3f' % eer)
示例2: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def __getitem__(self, index):
datafiles = self.files[index]
image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR)
size = image.shape
name = osp.splitext(osp.basename(datafiles["img"]))[0]
image = np.asarray(image, np.float32)
image -= self.mean
img_h, img_w, _ = image.shape
pad_h = max(self.crop_h - img_h, 0)
pad_w = max(self.crop_w - img_w, 0)
if pad_h > 0 or pad_w > 0:
image = cv2.copyMakeBorder(image, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=(0.0, 0.0, 0.0))
image = image.transpose((2, 0, 1))
return image, name, size
示例3: __init__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def __init__(self, files, channel=3, resize=None, shuffle=False):
"""
Args:
files (list): list of file paths.
channel (int): 1 or 3. Will convert grayscale to RGB images if channel==3.
Will produce (h, w, 1) array if channel==1.
resize (tuple): int or (h, w) tuple. If given, resize the image.
"""
assert len(files), "No image files given to ImageFromFile!"
self.files = files
self.channel = int(channel)
assert self.channel in [1, 3], self.channel
self.imread_mode = cv2.IMREAD_GRAYSCALE if self.channel == 1 else cv2.IMREAD_COLOR
if resize is not None:
resize = shape2d(resize)
self.resize = resize
self.shuffle = shuffle
示例4: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def __getitem__(self, index):
datafiles = self.files[index]
image = cv2.imread(datafiles["img"], cv2.IMREAD_COLOR)
label = cv2.imread(datafiles["label"], cv2.IMREAD_GRAYSCALE)
size = image.shape
name = datafiles["name"]
if self.f_scale != 1:
image = cv2.resize(image, None, fx=self.f_scale, fy=self.f_scale, interpolation=cv2.INTER_LINEAR)
label = cv2.resize(label, None, fx=self.f_scale, fy=self.f_scale, interpolation = cv2.INTER_NEAREST)
label[label == 11] = self.ignore_label
image = np.asarray(image, np.float32)
if self.rgb:
image = image[:, :, ::-1] ## BGR -> RGB
image /= 255 ## using pytorch pretrained models
image -= self.mean
image /= self.vars
image = image.transpose((2, 0, 1)) # HWC -> CHW
# print('image.shape:',image.shape)
return image.copy(), label.copy(), np.array(size), name
示例5: imread
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def imread(filename, flags=cv2.IMREAD_COLOR):
global _im_zfile
path = filename
pos_at = path.index('@')
if pos_at == -1:
print("character '@' is not found from the given path '%s'"%(path))
assert 0
path_zip = path[0: pos_at]
path_img = path[pos_at + 2:]
if not os.path.isfile(path_zip):
print("zip file '%s' is not found"%(path_zip))
assert 0
for i in range(len(_im_zfile)):
if _im_zfile[i]['path'] == path_zip:
data = _im_zfile[i]['zipfile'].read(path_img)
return cv2.imdecode(np.frombuffer(data, np.uint8), flags)
_im_zfile.append({
'path': path_zip,
'zipfile': zipfile.ZipFile(path_zip, 'r')
})
data = _im_zfile[-1]['zipfile'].read(path_img)
return cv2.imdecode(np.frombuffer(data, np.uint8), flags)
示例6: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def __getitem__(self, index):
img_id = self.ids[index]
target = ET.parse(self._annopath % img_id).getroot()
img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
height, width, _ = img.shape
if self.target_transform is not None:
target = self.target_transform(target)
if self.preproc is not None:
img, target = self.preproc(img, target)
#print(img.size())
# target = self.target_transform(target, width, height)
#print(target.shape)
return img, target
示例7: pull_img_anno
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def pull_img_anno(self, index):
'''Returns the original annotation of image at index
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to get annotation of
Return:
list: [img_id, [(label, bbox coords),...]]
eg: ('001718', [('dog', (96, 13, 438, 332))])
'''
img_id = self.ids[index]
img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
anno = ET.parse(self._annopath % img_id).getroot()
gt = self.target_transform(anno)
height, width, _ = img.shape
boxes = gt[:,:-1]
labels = gt[:,-1]
boxes[:, 0::2] /= width
boxes[:, 1::2] /= height
labels = np.expand_dims(labels,1)
targets = np.hstack((boxes,labels))
return img, targets
示例8: pull_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def pull_image(self, index):
"""Returns the original image object at index in PIL form
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to show
Return:
img
"""
img_id = self.id_to_img_map[index]
path = self.coco.loadImgs(img_id)[0]['file_name']
return cv2.imread(os.path.join(self.root, path), cv2.IMREAD_COLOR)
示例9: read_image_pair
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def read_image_pair(pair_path, resize_or_crop=None, image_size=(256,256)):
image_blur = cv2.imread(pair_path[0], cv2.IMREAD_COLOR)
image_blur = image_blur / 255.0 * 2.0 - 1.0
image_real = cv2.imread(pair_path[1], cv2.IMREAD_COLOR)
image_real = image_real / 255.0 * 2.0 - 1.0
if resize_or_crop != None:
assert image_size != None
if resize_or_crop == 'resize':
image_blur = cv2.resize(image_blur, image_size, interpolation=cv2.INTER_AREA)
image_real = cv2.resize(image_real, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image_blur = cv2.crop(image_blur, image_size)
image_real = cv2.crop(image_real, image_size)
else:
raise
if np.size(np.shape(image_blur)) == 3:
image_blur = np.expand_dims(image_blur, axis=0)
if np.size(np.shape(image_real)) == 3:
image_real = np.expand_dims(image_real, axis=0)
image_blur = np.array(image_blur, dtype=np.float32)
image_real = np.array(image_real, dtype=np.float32)
return image_blur, image_real
示例10: read_image
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def read_image(path, resize_or_crop=None, image_size=(256,256)):
image = cv2.imread(path, cv2.IMREAD_COLOR)
image = image/255.0 * 2.0 - 1.0
assert resize_or_crop != None
assert image_size != None
if resize_or_crop == 'resize':
image = cv2.resize(image, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image = cv2.crop(image, image_size)
if np.size(np.shape(image)) == 3:
image = np.expand_dims(image, axis=0)
image = np.array(image, dtype=np.float32)
return image
示例11: test_lmdb_train
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def test_lmdb_train(db, augs, batch):
ds = LMDBData(db, shuffle=False)
ds = LocallyShuffleData(ds, 50000)
ds = MultiProcessRunner(ds, 5000, 1)
return ds
ds = LMDBDataPoint(ds)
def f(x):
return cv2.imdecode(x, cv2.IMREAD_COLOR)
ds = MapDataComponent(ds, f, 0)
ds = AugmentImageComponent(ds, augs)
ds = BatchData(ds, batch, use_list=True)
# ds = PlasmaPutData(ds)
ds = MultiProcessRunnerZMQ(ds, 40, hwm=80)
# ds = PlasmaGetData(ds)
return ds
示例12: test_lmdb_inference
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def test_lmdb_inference(db, augs, batch):
ds = LMDBData(db, shuffle=False)
# ds = LocallyShuffleData(ds, 50000)
augs = AugmentorList(augs)
def mapper(data):
im, label = loads(data[1])
im = cv2.imdecode(im, cv2.IMREAD_COLOR)
im = augs.augment(im)
return im, label
ds = MultiProcessMapData(ds, 40, mapper,
buffer_size=200)
# ds = MultiThreadMapData(ds, 40, mapper, buffer_size=2000)
ds = BatchData(ds, batch)
ds = MultiProcessRunnerZMQ(ds, 1)
return ds
示例13: get_data
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def get_data(self):
idxs = np.arange(len(self.train_list))
if self.shuffle:
self.rng.shuffle(idxs)
caches = {}
for i, k in enumerate(idxs):
path = self.train_list[k]
label = self.lb_list[k]
if i % self.preload == 0:
try:
caches = ILSVRCTenth._read_tenth_batch(self.train_list[idxs[i:i+self.preload]])
except Exception as e:
logging.warning('tenth local cache failed, err=%s' % str(e))
content = caches.get(path, '')
if not content:
content = ILSVRCTenth._read_tenth(path)
img = cv2.imdecode(np.fromstring(content, dtype=np.uint8), cv2.IMREAD_COLOR)
yield [img, label]
示例14: test_solution_close_to_original_implementation
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def test_solution_close_to_original_implementation(self):
image = cv2.imread('testdata/source.png', cv2.IMREAD_COLOR) / 255.0
scribles = cv2.imread('testdata/scribbles.png', cv2.IMREAD_COLOR) / 255.0
alpha = closed_form_matting.closed_form_matting_with_scribbles(image, scribles)
foreground, background = solve_foreground_background(image, alpha)
matlab_alpha = cv2.imread('testdata/matlab_alpha.png', cv2.IMREAD_GRAYSCALE) / 255.0
matlab_foreground = cv2.imread('testdata/matlab_foreground.png', cv2.IMREAD_COLOR) / 255.0
matlab_background = cv2.imread('testdata/matlab_background.png', cv2.IMREAD_COLOR) / 255.0
sad_alpha = np.mean(np.abs(alpha - matlab_alpha))
sad_foreground = np.mean(np.abs(foreground - matlab_foreground))
sad_background = np.mean(np.abs(background - matlab_background))
self.assertLess(sad_alpha, 1e-2)
self.assertLess(sad_foreground, 1e-2)
self.assertLess(sad_background, 1e-2)
示例15: __getitem__
# 需要導入模塊: import cv2 [as 別名]
# 或者: from cv2 import IMREAD_COLOR [as 別名]
def __getitem__(self, index):
img_id = self.ids[index]
target = ET.parse(self._annopath % img_id).getroot()
img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
#img = Image.open(self._imgpath % img_id).convert('RGB')
height, width, _ = img.shape
if self.target_transform is not None:
target = self.target_transform(target)
if self.preproc is not None:
img, target = self.preproc(img, target, self.input_dim)
#print(img.size())
img_info = (width, height)
return img, target, img_info, img_id