本文整理匯總了Golang中decomp/org/decomp/graphs.SubGraph.Exit方法的典型用法代碼示例。如果您正苦於以下問題:Golang SubGraph.Exit方法的具體用法?Golang SubGraph.Exit怎麽用?Golang SubGraph.Exit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類decomp/org/decomp/graphs.SubGraph
的用法示例。
在下文中一共展示了SubGraph.Exit方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: isPotential
// isPotential returns true if the graph node g is a potential candidate for the
// sub node s, and false otherwise.
func isPotential(g, s *dot.Node, sub *graphs.SubGraph) bool {
// Verify predecessors.
if s.Name != sub.Entry() && len(g.Preds) != len(s.Preds) {
return false
}
// Verify successors.
if s.Name != sub.Exit() && len(g.Succs) != len(s.Succs) {
return false
}
return true
}
示例2: Merge
// Merge merges the nodes of the isomorphism of sub in graph into a single node.
// If successful it returns the name of the new node.
func Merge(graph *dot.Graph, m map[string]string, sub *graphs.SubGraph) (name string, err error) {
var nodes []*dot.Node
for _, gname := range m {
node, ok := graph.Nodes.Lookup[gname]
if !ok {
return "", errutil.Newf("unable to locate mapping for node %q", gname)
}
nodes = append(nodes, node)
}
name = uniqName(graph, sub.Name)
entry, ok := graph.Nodes.Lookup[m[sub.Entry()]]
if !ok {
return "", errutil.Newf("unable to locate mapping for entry node %q", sub.Entry())
}
exit, ok := graph.Nodes.Lookup[m[sub.Exit()]]
if !ok {
return "", errutil.Newf("unable to locate mapping for exit node %q", sub.Exit())
}
err = graph.Replace(nodes, name, entry, exit)
if err != nil {
return "", errutil.Err(err)
}
return name, nil
}
示例3: isValid
// isValid returns true if m is a valid mapping, from sub node name to graph
// node name, for an isomorphism of sub in graph considering all nodes and edges
// except predecessors of entry and successors of exit.
func (eq *equation) isValid(graph *dot.Graph, sub *graphs.SubGraph) bool {
if len(eq.m) != len(sub.Nodes.Nodes) {
return false
}
// Check for duplicate values.
if hasDup(eq.m) {
return false
}
// Verify that the entry node dominates the exit node.
entry, ok := graph.Nodes.Lookup[eq.m[sub.Entry()]]
if !ok {
return false
}
exit, ok := graph.Nodes.Lookup[eq.m[sub.Exit()]]
if !ok {
return false
}
// TODO: Figure out how to handle find the if-statement in the following graph:
// digraph bar {
// E -> F
// E -> J
// F -> G
// F -> E
// G -> I
// I -> E
// E [label="entry"]
// F
// G
// I
// J [label="exit"]
// }
//
// ref: https://github.com/decomp/decompilation/issues/172
if !entry.Dominates(exit) {
return false
}
// Sort keys to make the algorithm deterministic.
var snames []string
for sname := range eq.m {
snames = append(snames, sname)
}
sort.Strings(snames)
for _, sname := range snames {
gname := eq.m[sname]
s, ok := sub.Nodes.Lookup[sname]
if !ok {
panic(fmt.Sprintf("unable to locate node %q in sub", sname))
}
g, ok := graph.Nodes.Lookup[gname]
if !ok {
panic(fmt.Sprintf("unable to locate node %q in graph", gname))
}
// Verify predecessors.
if s.Name != sub.Entry() {
if len(s.Preds) != len(g.Preds) {
return false
}
for _, spred := range s.Preds {
found := false
for _, gpred := range g.Preds {
if gpred.Name == eq.m[spred.Name] {
found = true
break
}
}
if !found {
return false
}
}
}
// Verify successors.
if s.Name != sub.Exit() {
if len(s.Succs) != len(g.Succs) {
return false
}
for _, ssucc := range s.Succs {
found := false
for _, gsucc := range g.Succs {
if gsucc.Name == eq.m[ssucc.Name] {
found = true
break
}
}
if !found {
return false
}
}
}
}
// Isomorphism found!
//.........這裏部分代碼省略.........