本文整理匯總了Golang中code/google/com/p/rsc/c2go/liblink.Prog.From方法的典型用法代碼示例。如果您正苦於以下問題:Golang Prog.From方法的具體用法?Golang Prog.From怎麽用?Golang Prog.From使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類code/google/com/p/rsc/c2go/liblink.Prog
的用法示例。
在下文中一共展示了Prog.From方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: addstacksplit
func addstacksplit(ctxt *liblink.Link, cursym *liblink.LSym) {
var p *liblink.Prog
var pl *liblink.Prog
var q *liblink.Prog
var q1 *liblink.Prog
var q2 *liblink.Prog
var o int
var autosize int64
var autoffset int64
autosize = 0
if ctxt.Symmorestack[0] == nil {
ctxt.Symmorestack[0] = liblink.Linklookup(ctxt, "runtime.morestack", 0)
ctxt.Symmorestack[1] = liblink.Linklookup(ctxt, "runtime.morestack_noctxt", 0)
}
q = nil
ctxt.Cursym = cursym
if cursym.Text == nil || cursym.Text.Link == nil {
return
}
softfloat(ctxt, cursym)
p = cursym.Text
autoffset = p.To.Offset
if autoffset < 0 {
autoffset = 0
}
cursym.Locals = autoffset
cursym.Args = p.To.Offset2
if ctxt.Debugzerostack != 0 {
if autoffset != 0 && p.Reg&liblink.NOSPLIT == 0 {
// MOVW $4(R13), R1
p = liblink.Appendp(ctxt, p)
p.As = AMOVW
p.From.Typ = D_CONST
p.From.Reg = 13
p.From.Offset = 4
p.To.Typ = D_REG
p.To.Reg = 1
// MOVW $n(R13), R2
p = liblink.Appendp(ctxt, p)
p.As = AMOVW
p.From.Typ = D_CONST
p.From.Reg = 13
p.From.Offset = 4 + autoffset
p.To.Typ = D_REG
p.To.Reg = 2
// MOVW $0, R3
p = liblink.Appendp(ctxt, p)
p.As = AMOVW
p.From.Typ = D_CONST
p.From.Offset = 0
p.To.Typ = D_REG
p.To.Reg = 3
// L:
// MOVW.nil R3, 0(R1) +4
// CMP R1, R2
// BNE L
pl = liblink.Appendp(ctxt, p)
p = pl
p.As = AMOVW
p.From.Typ = D_REG
p.From.Reg = 3
p.To.Typ = D_OREG
p.To.Reg = 1
p.To.Offset = 4
p.Scond |= C_PBIT
p = liblink.Appendp(ctxt, p)
p.As = ACMP
p.From.Typ = D_REG
p.From.Reg = 1
p.Reg = 2
p = liblink.Appendp(ctxt, p)
p.As = ABNE
p.To.Typ = D_BRANCH
p.Pcond = pl
}
}
/*
* find leaf subroutines
* strip NOPs
* expand RET
* expand BECOME pseudo
*/
for p = cursym.Text; p != nil; p = p.Link {
switch p.As {
case ACASE:
if ctxt.Flag_shared != 0 {
linkcase(p)
}
case ATEXT:
p.Mark |= LEAF
case ARET:
break
case ADIV,
ADIVU,
AMOD,
AMODU:
q = p
if ctxt.Sym_div == nil {
initdiv(ctxt)
}
//.........這裏部分代碼省略.........
示例2: progedit
func progedit(ctxt *liblink.Link, p *liblink.Prog) {
var literal string
var s *liblink.LSym
var q *liblink.Prog
// Thread-local storage references use the TLS pseudo-register.
// As a register, TLS refers to the thread-local storage base, and it
// can only be loaded into another register:
//
// MOVQ TLS, AX
//
// An offset from the thread-local storage base is written off(reg)(TLS*1).
// Semantically it is off(reg), but the (TLS*1) annotation marks this as
// indexing from the loaded TLS base. This emits a relocation so that
// if the linker needs to adjust the offset, it can. For example:
//
// MOVQ TLS, AX
// MOVQ 8(AX)(TLS*1), CX // load m into CX
//
// On systems that support direct access to the TLS memory, this
// pair of instructions can be reduced to a direct TLS memory reference:
//
// MOVQ 8(TLS), CX // load m into CX
//
// The 2-instruction and 1-instruction forms correspond roughly to
// ELF TLS initial exec mode and ELF TLS local exec mode, respectively.
//
// We applies this rewrite on systems that support the 1-instruction form.
// The decision is made using only the operating system (and probably
// the -shared flag, eventually), not the link mode. If some link modes
// on a particular operating system require the 2-instruction form,
// then all builds for that operating system will use the 2-instruction
// form, so that the link mode decision can be delayed to link time.
//
// In this way, all supported systems use identical instructions to
// access TLS, and they are rewritten appropriately first here in
// liblink and then finally using relocations in the linker.
if canuselocaltls(ctxt) {
// Reduce TLS initial exec model to TLS local exec model.
// Sequences like
// MOVQ TLS, BX
// ... off(BX)(TLS*1) ...
// become
// NOP
// ... off(TLS) ...
//
// TODO(rsc): Remove the Hsolaris special case. It exists only to
// guarantee we are producing byte-identical binaries as before this code.
// But it should be unnecessary.
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Typ == D_TLS && D_AX <= p.To.Typ && p.To.Typ <= D_R15 && ctxt.Headtype != liblink.Hsolaris {
nopout(p)
}
if p.From.Index == D_TLS && D_INDIR+D_AX <= p.From.Typ && p.From.Typ <= D_INDIR+D_R15 {
p.From.Typ = D_INDIR + D_TLS
p.From.Scale = 0
p.From.Index = D_NONE
}
if p.To.Index == D_TLS && D_INDIR+D_AX <= p.To.Typ && p.To.Typ <= D_INDIR+D_R15 {
p.To.Typ = D_INDIR + D_TLS
p.To.Scale = 0
p.To.Index = D_NONE
}
} else {
// As a courtesy to the C compilers, rewrite TLS local exec load as TLS initial exec load.
// The instruction
// MOVQ off(TLS), BX
// becomes the sequence
// MOVQ TLS, BX
// MOVQ off(BX)(TLS*1), BX
// This allows the C compilers to emit references to m and g using the direct off(TLS) form.
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Typ == D_INDIR+D_TLS && D_AX <= p.To.Typ && p.To.Typ <= D_R15 {
q = liblink.Appendp(ctxt, p)
q.As = p.As
q.From = p.From
q.From.Typ = D_INDIR + p.To.Typ
q.From.Index = D_TLS
q.From.Scale = 2 // TODO: use 1
q.To = p.To
p.From.Typ = D_TLS
p.From.Index = D_NONE
p.From.Offset = 0
}
}
// TODO: Remove.
if ctxt.Headtype == liblink.Hwindows || ctxt.Headtype == liblink.Hplan9 {
if p.From.Scale == 1 && p.From.Index == D_TLS {
p.From.Scale = 2
}
if p.To.Scale == 1 && p.To.Index == D_TLS {
p.To.Scale = 2
}
}
if ctxt.Headtype == liblink.Hnacl {
nacladdr(ctxt, p, &p.From)
nacladdr(ctxt, p, &p.To)
}
// Maintain information about code generation mode.
if ctxt.Mode == 0 {
ctxt.Mode = 64
}
p.Mode = ctxt.Mode
//.........這裏部分代碼省略.........
示例3: progedit
func progedit(ctxt *liblink.Link, p *liblink.Prog) {
var literal string
var s *liblink.LSym
var q *liblink.Prog
// See obj6.c for discussion of TLS.
if canuselocaltls(ctxt) {
// Reduce TLS initial exec model to TLS local exec model.
// Sequences like
// MOVL TLS, BX
// ... off(BX)(TLS*1) ...
// become
// NOP
// ... off(TLS) ...
if p.As == AMOVL && p.From.Typ == D_TLS && D_AX <= p.To.Typ && p.To.Typ <= D_DI {
p.As = ANOP
p.From.Typ = D_NONE
p.To.Typ = D_NONE
}
if p.From.Index == D_TLS && D_INDIR+D_AX <= p.From.Typ && p.From.Typ <= D_INDIR+D_DI {
p.From.Typ = D_INDIR + D_TLS
p.From.Scale = 0
p.From.Index = D_NONE
}
if p.To.Index == D_TLS && D_INDIR+D_AX <= p.To.Typ && p.To.Typ <= D_INDIR+D_DI {
p.To.Typ = D_INDIR + D_TLS
p.To.Scale = 0
p.To.Index = D_NONE
}
} else {
// As a courtesy to the C compilers, rewrite TLS local exec load as TLS initial exec load.
// The instruction
// MOVL off(TLS), BX
// becomes the sequence
// MOVL TLS, BX
// MOVL off(BX)(TLS*1), BX
// This allows the C compilers to emit references to m and g using the direct off(TLS) form.
if p.As == AMOVL && p.From.Typ == D_INDIR+D_TLS && D_AX <= p.To.Typ && p.To.Typ <= D_DI {
q = liblink.Appendp(ctxt, p)
q.As = p.As
q.From = p.From
q.From.Typ = D_INDIR + p.To.Typ
q.From.Index = D_TLS
q.From.Scale = 2 // TODO: use 1
q.To = p.To
p.From.Typ = D_TLS
p.From.Index = D_NONE
p.From.Offset = 0
}
}
// TODO: Remove.
if ctxt.Headtype == liblink.Hplan9 {
if p.From.Scale == 1 && p.From.Index == D_TLS {
p.From.Scale = 2
}
if p.To.Scale == 1 && p.To.Index == D_TLS {
p.To.Scale = 2
}
}
// Rewrite CALL/JMP/RET to symbol as D_BRANCH.
switch p.As {
case ACALL,
AJMP,
ARET:
if (p.To.Typ == D_EXTERN || p.To.Typ == D_STATIC) && p.To.Sym != nil {
p.To.Typ = D_BRANCH
}
break
}
// Rewrite float constants to values stored in memory.
switch p.As {
case AFMOVF,
AFADDF,
AFSUBF,
AFSUBRF,
AFMULF,
AFDIVF,
AFDIVRF,
AFCOMF,
AFCOMFP,
AMOVSS,
AADDSS,
ASUBSS,
AMULSS,
ADIVSS,
ACOMISS,
AUCOMISS:
if p.From.Typ == D_FCONST {
var i32 uint32
var f32 float32
f32 = float32(p.From.U.Dval)
i32 = math.Float32bits(f32)
literal = fmt.Sprintf("$f32.%08x", uint32(i32))
s = liblink.Linklookup(ctxt, literal, 0)
if s.Typ == 0 {
s.Typ = liblink.SRODATA
liblink.Adduint32(ctxt, s, i32)
s.Reachable = 0
}
p.From.Typ = D_EXTERN
p.From.Sym = s
//.........這裏部分代碼省略.........