本文整理匯總了Golang中cmd/avail/obj.Prog.From方法的典型用法代碼示例。如果您正苦於以下問題:Golang Prog.From方法的具體用法?Golang Prog.From怎麽用?Golang Prog.From使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cmd/avail/obj.Prog
的用法示例。
在下文中一共展示了Prog.From方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: constprop
/*
* The idea is to remove redundant constants.
* $c1->v1
* ($c1->v2 s/$c1/v1)*
* set v1 return
* The v1->v2 should be eliminated by copy propagation.
*/
func constprop(c1 *obj.Addr, v1 *obj.Addr, r *gc.Flow) {
if gc.Debug['P'] != 0 {
fmt.Printf("constprop %v->%v\n", gc.Ctxt.Dconv(c1), gc.Ctxt.Dconv(v1))
}
var p *obj.Prog
for ; r != nil; r = r.S1 {
p = r.Prog
if gc.Debug['P'] != 0 {
fmt.Printf("%v", p)
}
if gc.Uniqp(r) == nil {
if gc.Debug['P'] != 0 {
fmt.Printf("; merge; return\n")
}
return
}
if p.As == arm.AMOVW && copyas(&p.From, c1) {
if gc.Debug['P'] != 0 {
fmt.Printf("; sub%v/%v", gc.Ctxt.Dconv(&p.From), gc.Ctxt.Dconv(v1))
}
p.From = *v1
} else if copyu(p, v1, nil) > 1 {
if gc.Debug['P'] != 0 {
fmt.Printf("; %vset; return\n", gc.Ctxt.Dconv(v1))
}
return
}
if gc.Debug['P'] != 0 {
fmt.Printf("\n")
}
if r.S2 != nil {
constprop(c1, v1, r.S2)
}
}
}
示例2: copyu
// If s==nil, copyu returns the set/use of v in p; otherwise, it
// modifies p to replace reads of v with reads of s and returns 0 for
// success or non-zero for failure.
//
// If s==nil, copy returns one of the following values:
// 1 if v only used
// 2 if v is set and used in one address (read-alter-rewrite;
// can't substitute)
// 3 if v is only set
// 4 if v is set in one address and used in another (so addresses
// can be rewritten independently)
// 0 otherwise (not touched)
func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int {
if p.From3Type() != obj.TYPE_NONE {
// never generates a from3
fmt.Printf("copyu: from3 (%v) not implemented\n", gc.Ctxt.Dconv(p.From3))
}
switch p.As {
default:
fmt.Printf("copyu: can't find %v\n", obj.Aconv(p.As))
return 2
case obj.ANOP, /* read p->from, write p->to */
mips.AMOVV,
mips.AMOVF,
mips.AMOVD,
mips.AMOVH,
mips.AMOVHU,
mips.AMOVB,
mips.AMOVBU,
mips.AMOVW,
mips.AMOVWU,
mips.AMOVFD,
mips.AMOVDF,
mips.AMOVDW,
mips.AMOVWD,
mips.AMOVFW,
mips.AMOVWF,
mips.AMOVDV,
mips.AMOVVD,
mips.AMOVFV,
mips.AMOVVF,
mips.ATRUNCFV,
mips.ATRUNCDV,
mips.ATRUNCFW,
mips.ATRUNCDW:
if s != nil {
if copysub(&p.From, v, s, true) {
return 1
}
// Update only indirect uses of v in p->to
if !copyas(&p.To, v) {
if copysub(&p.To, v, s, true) {
return 1
}
}
return 0
}
if copyas(&p.To, v) {
// Fix up implicit from
if p.From.Type == obj.TYPE_NONE {
p.From = p.To
}
if copyau(&p.From, v) {
return 4
}
return 3
}
if copyau(&p.From, v) {
return 1
}
if copyau(&p.To, v) {
// p->to only indirectly uses v
return 1
}
return 0
case mips.ASGT, /* read p->from, read p->reg, write p->to */
mips.ASGTU,
mips.AADD,
mips.AADDU,
mips.ASUB,
mips.ASUBU,
mips.ASLL,
mips.ASRL,
mips.ASRA,
mips.AOR,
mips.ANOR,
mips.AAND,
mips.AXOR,
mips.AADDV,
mips.AADDVU,
mips.ASUBV,
//.........這裏部分代碼省略.........
示例3: peep
func peep(firstp *obj.Prog) {
g := gc.Flowstart(firstp, nil)
if g == nil {
return
}
gactive = 0
// byte, word arithmetic elimination.
elimshortmov(g)
// constant propagation
// find MOV $con,R followed by
// another MOV $con,R without
// setting R in the interim
var p *obj.Prog
for r := g.Start; r != nil; r = r.Link {
p = r.Prog
switch p.As {
case x86.ALEAL:
if regtyp(&p.To) {
if p.From.Sym != nil {
if p.From.Index == x86.REG_NONE {
conprop(r)
}
}
}
case x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVSS,
x86.AMOVSD:
if regtyp(&p.To) {
if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST {
conprop(r)
}
}
}
}
var r1 *gc.Flow
var p1 *obj.Prog
var r *gc.Flow
var t int
loop1:
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
gc.Dumpit("loop1", g.Start, 0)
}
t = 0
for r = g.Start; r != nil; r = r.Link {
p = r.Prog
switch p.As {
case x86.AMOVL,
x86.AMOVSS,
x86.AMOVSD:
if regtyp(&p.To) {
if regtyp(&p.From) {
if copyprop(g, r) {
excise(r)
t++
} else if subprop(r) && copyprop(g, r) {
excise(r)
t++
}
}
}
case x86.AMOVBLZX,
x86.AMOVWLZX,
x86.AMOVBLSX,
x86.AMOVWLSX:
if regtyp(&p.To) {
r1 = rnops(gc.Uniqs(r))
if r1 != nil {
p1 = r1.Prog
if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg {
p1.As = x86.AMOVL
t++
}
}
}
case x86.AADDL,
x86.AADDW:
if p.From.Type != obj.TYPE_CONST || needc(p.Link) {
break
}
if p.From.Offset == -1 {
if p.As == x86.AADDL {
p.As = x86.ADECL
} else {
p.As = x86.ADECW
}
p.From = obj.Addr{}
break
}
if p.From.Offset == 1 {
if p.As == x86.AADDL {
//.........這裏部分代碼省略.........
示例4: preprocess
func preprocess(ctxt *obj.Link, cursym *obj.LSym) {
// TODO(minux): add morestack short-cuts with small fixed frame-size.
ctxt.Cursym = cursym
if cursym.Text == nil || cursym.Text.Link == nil {
return
}
p := cursym.Text
textstksiz := p.To.Offset
if textstksiz == -8 {
// Compatibility hack.
p.From3.Offset |= obj.NOFRAME
textstksiz = 0
}
if textstksiz%8 != 0 {
ctxt.Diag("frame size %d not a multiple of 8", textstksiz)
}
if p.From3.Offset&obj.NOFRAME != 0 {
if textstksiz != 0 {
ctxt.Diag("NOFRAME functions must have a frame size of 0, not %d", textstksiz)
}
}
cursym.Args = p.To.Val.(int32)
cursym.Locals = int32(textstksiz)
/*
* find leaf subroutines
* strip NOPs
* expand RET
* expand BECOME pseudo
*/
if ctxt.Debugvlog != 0 {
fmt.Fprintf(ctxt.Bso, "%5.2f noops\n", obj.Cputime())
}
ctxt.Bso.Flush()
var q *obj.Prog
var q1 *obj.Prog
for p := cursym.Text; p != nil; p = p.Link {
switch p.As {
/* too hard, just leave alone */
case obj.ATEXT:
q = p
p.Mark |= LABEL | LEAF | SYNC
if p.Link != nil {
p.Link.Mark |= LABEL
}
case ANOR:
q = p
if p.To.Type == obj.TYPE_REG {
if p.To.Reg == REGZERO {
p.Mark |= LABEL | SYNC
}
}
case ASYNC,
AWORD:
q = p
p.Mark |= LABEL | SYNC
continue
case AMOVW, AMOVWZ, AMOVD:
q = p
if p.From.Reg >= REG_RESERVED || p.To.Reg >= REG_RESERVED {
p.Mark |= LABEL | SYNC
}
continue
case AFABS,
AFADD,
AFDIV,
AFMADD,
AFMOVD,
AFMOVS,
AFMSUB,
AFMUL,
AFNABS,
AFNEG,
AFNMADD,
AFNMSUB,
ALEDBR,
ALDEBR,
AFSUB:
q = p
p.Mark |= FLOAT
continue
case ABL,
ABCL,
obj.ADUFFZERO,
obj.ADUFFCOPY:
cursym.Text.Mark &^= LEAF
fallthrough
case ABC,
//.........這裏部分代碼省略.........
示例5: progedit
func progedit(ctxt *obj.Link, p *obj.Prog) {
// Maintain information about code generation mode.
if ctxt.Mode == 0 {
ctxt.Mode = ctxt.Arch.RegSize * 8
}
p.Mode = int8(ctxt.Mode)
switch p.As {
case AMODE:
if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) {
switch int(p.From.Offset) {
case 16, 32, 64:
ctxt.Mode = int(p.From.Offset)
}
}
obj.Nopout(p)
}
// Thread-local storage references use the TLS pseudo-register.
// As a register, TLS refers to the thread-local storage base, and it
// can only be loaded into another register:
//
// MOVQ TLS, AX
//
// An offset from the thread-local storage base is written off(reg)(TLS*1).
// Semantically it is off(reg), but the (TLS*1) annotation marks this as
// indexing from the loaded TLS base. This emits a relocation so that
// if the linker needs to adjust the offset, it can. For example:
//
// MOVQ TLS, AX
// MOVQ 0(AX)(TLS*1), CX // load g into CX
//
// On systems that support direct access to the TLS memory, this
// pair of instructions can be reduced to a direct TLS memory reference:
//
// MOVQ 0(TLS), CX // load g into CX
//
// The 2-instruction and 1-instruction forms correspond to the two code
// sequences for loading a TLS variable in the local exec model given in "ELF
// Handling For Thread-Local Storage".
//
// We apply this rewrite on systems that support the 1-instruction form.
// The decision is made using only the operating system and the -shared flag,
// not the link mode. If some link modes on a particular operating system
// require the 2-instruction form, then all builds for that operating system
// will use the 2-instruction form, so that the link mode decision can be
// delayed to link time.
//
// In this way, all supported systems use identical instructions to
// access TLS, and they are rewritten appropriately first here in
// liblink and then finally using relocations in the linker.
//
// When -shared is passed, we leave the code in the 2-instruction form but
// assemble (and relocate) them in different ways to generate the initial
// exec code sequence. It's a bit of a fluke that this is possible without
// rewriting the instructions more comprehensively, and it only does because
// we only support a single TLS variable (g).
if CanUse1InsnTLS(ctxt) {
// Reduce 2-instruction sequence to 1-instruction sequence.
// Sequences like
// MOVQ TLS, BX
// ... off(BX)(TLS*1) ...
// become
// NOP
// ... off(TLS) ...
//
// TODO(rsc): Remove the Hsolaris special case. It exists only to
// guarantee we are producing byte-identical binaries as before this code.
// But it should be unnecessary.
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris {
obj.Nopout(p)
}
if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 {
p.From.Reg = REG_TLS
p.From.Scale = 0
p.From.Index = REG_NONE
}
if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
p.To.Reg = REG_TLS
p.To.Scale = 0
p.To.Index = REG_NONE
}
} else {
// load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it
// as the 2-instruction sequence if necessary.
// MOVQ 0(TLS), BX
// becomes
// MOVQ TLS, BX
// MOVQ 0(BX)(TLS*1), BX
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
q := obj.Appendp(ctxt, p)
q.As = p.As
q.From = p.From
q.From.Type = obj.TYPE_MEM
q.From.Reg = p.To.Reg
q.From.Index = REG_TLS
q.From.Scale = 2 // TODO: use 1
q.To = p.To
//.........這裏部分代碼省略.........