本文整理匯總了C++中std::cos方法的典型用法代碼示例。如果您正苦於以下問題:C++ std::cos方法的具體用法?C++ std::cos怎麽用?C++ std::cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類std
的用法示例。
在下文中一共展示了std::cos方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: cos
Scalar MASA::ad_cns_2d_crossterms<Scalar>::eval_exact_p(Scalar x, Scalar y)
{
using std::cos;
Scalar P = p_0 + p_x * cos(a_px * PI * x / L) * p_y * cos(a_py * PI * y / L);
return P;
}
示例2: sqrt
/*!
* Convert X, Y, Z in wgs84 to longitude, latitude, height
* @param[in] x in meter
* @param[in] y in meter
* @param[in] z in meter
* @return llh vector<double> contains longitude, latitude, height
*/
vector<double> ecef2llh(const double& x, const double& y, const double& z)
{
double longitude {0.0}; /*< longitude in radian */
double latitude {0.0}; /*< latitude in radian */
double height {0.0}; /*< height in meter */
double p = sqrt((x * x) + (y * y));
double theta = atan2((z * A), (p * B));
/* Avoid 0 division error */
if(x == 0.0 && y == 0.0) {
vector<double>
llh {0.0, copysign(90.0,z), z - copysign(B,z)};
return llh;
} else {
latitude = atan2(
(z + (Er * Er * B * pow(sin(theta), 3))),
(p - (E * E * A * pow(cos(theta), 3)))
);
longitude = atan2(y, x);
double n = A / sqrt(1.0 - E * E * sin(latitude) * sin(latitude));
height = p / cos(latitude) - n;
vector<double>
llh {toDeg(longitude), toDeg(latitude), height};
return llh;
}
}
示例3: TEST
TEST(AgradFwdTan, FvarFvarVar_2ndDeriv) {
using stan::agrad::fvar;
using stan::agrad::var;
using std::tan;
using std::cos;
fvar<fvar<var> > x;
x.val_.val_ = 1.5;
x.val_.d_ = 2.0;
fvar<fvar<var> > a = tan(x);
AVEC p = createAVEC(x.val_.val_);
VEC g;
a.val_.d_.grad(p,g);
EXPECT_FLOAT_EQ(2.0 * 2.0 * tan(1.5) / (cos(1.5) * cos(1.5)), g[0]);
fvar<fvar<var> > y;
y.val_.val_ = 1.5;
y.d_.val_ = 2.0;
fvar<fvar<var> > b = tan(y);
AVEC q = createAVEC(y.val_.val_);
VEC r;
b.d_.val_.grad(q,r);
EXPECT_FLOAT_EQ(2.0 * 2.0 * tan(1.5) / (cos(1.5) * cos(1.5)), r[0]);
}
示例4: cos
array<vector<vec3>, NUM_HORIZONTAL_SLICES_SPHERE> Shapes::Sphere::calculatePoints()
{
constexpr float sliceDiff = static_cast<float>(PI) / static_cast<float>(NUM_HORIZONTAL_SLICES_SPHERE);
constexpr float vertSliceDiff = static_cast<float>(TWOPI) / static_cast<float>(NUM_VERTICAL_SLICES_SPHERE);
printf("sliceDiff:%f\nvertSlideDiff:%f\n", sliceDiff, vertSliceDiff);
float x = 0.0f;
float z = 0.0f;
float y = 0.0f;
float phi = static_cast<float>(PI) / 4.0f;
float theta;
array<vector<vec3>, NUM_HORIZONTAL_SLICES_SPHERE> horizontalCircles;
//move down the sphere
for (size_t i = 0;i < NUM_HORIZONTAL_SLICES_SPHERE;i++)
{
phi -= sliceDiff;
vector<vec3> curCircle;
theta = 0.0f;
//move around the vertical axis calculating points
for (size_t j = 0;j < NUM_VERTICAL_SLICES_SPHERE;j++)
{
x = cos(theta)*sin(phi);
y = cos(phi);
z = sin(theta)*sin(phi);
curCircle.emplace_back(vec3(x, y, z));
theta += vertSliceDiff;
}
horizontalCircles[i] = move(curCircle);
}
return horizontalCircles;
}
示例5: tan
inline
fvar<T>
tan(const fvar<T>& x) {
using std::cos;
using std::tan;
return fvar<T>(tan(x.val_), x.d_ / (cos(x.val_) * cos(x.val_)));
}
示例6: TEST
TEST(AgradFwdCos,FvarFvarDouble) {
using stan::agrad::fvar;
using std::sin;
using std::cos;
fvar<fvar<double> > x;
x.val_.val_ = 1.5;
x.val_.d_ = 2.0;
fvar<fvar<double> > a = cos(x);
EXPECT_FLOAT_EQ(cos(1.5), a.val_.val_);
EXPECT_FLOAT_EQ(-2.0 * sin(1.5), a.val_.d_);
EXPECT_FLOAT_EQ(0, a.d_.val_);
EXPECT_FLOAT_EQ(0, a.d_.d_);
fvar<fvar<double> > y;
y.val_.val_ = 1.5;
y.d_.val_ = 2.0;
a = cos(y);
EXPECT_FLOAT_EQ(cos(1.5), a.val_.val_);
EXPECT_FLOAT_EQ(0, a.val_.d_);
EXPECT_FLOAT_EQ(-2.0 * sin(1.5), a.d_.val_);
EXPECT_FLOAT_EQ(0, a.d_.d_);
}
示例7: varying_data
static inline
Scalar varying_data(const Scalar& x, const Scalar& L)
{
using boost::math::constants::pi;
using std::cos;
const Scalar twopi_L = 2*pi<Scalar>()/L;
return cos(twopi_L*(x + 2*cos(twopi_L*3*x)));
}
示例8: dsFindSphereCenter
// 輸入 點的直角坐標 和點相對於球心的球坐標,輸出 球心的直角坐標 GLdouble
void dsFindSphereCenter(
const GLdouble sphere[3],
const GLdouble ortho[3],
GLdouble center[3]
) {
center[0] = sphere[0] * sin(sphere[1]) * cos(sphere[2]) - ortho[0];
center[1] = sphere[0] * sin(sphere[1]) * sin(sphere[2]) - ortho[1];
center[2] = sphere[0] * cos(sphere[1]) - ortho[2];
}
示例9: cos
Scalar MASA::euler_transient_1d<Scalar>::eval_exact_p(Scalar x,Scalar t)
{
using std::cos;
using std::sin;
Scalar exact_p;
exact_p = p_0 + p_x * cos(a_px * pi * x / L) + p_t * cos(a_pt * pi * t / L);
return exact_p;
}
示例10: dsSphereToOrtho3dv
// 輸入 點相對於球心的球坐標 和 球心的直角坐標,輸出 點的直角坐標 GLdouble
void dsSphereToOrtho3dv(
const GLdouble sphere[3],
const GLdouble center[3],
GLdouble ortho[3]
) {
ortho[0] = center[0] + sphere[0] * sin(sphere[1]) * cos(sphere[2]);
ortho[1] = center[1] + sphere[0] * sin(sphere[1]) * sin(sphere[2]);
ortho[2] = center[2] + sphere[0] * cos(sphere[1]);
}
示例11: evalZ
/** Computes the function
* Z[n*(n+1)/2+m]
* = Z_n^m
* = i^-|m| A_n^m (-1)^n rho^n Y_n^m(theta, phi)
* = i^-|m| (-1)^n/sqrt((n+m)!(n-m)!) (-1)^n rho^n Y_n^m(theta, phi)
* = rho^n/(n+|m|)! P_n^|m|(cos theta) exp(i m phi) i^-|m|
* for all 0 <= n < P and all 0 <= m <= n.
*
* @param[in] rho The radial distance, rho > 0.
* @param[in] theta The inclination or polar angle, 0 <= theta <= pi.
* @param[in] phi The azimuthal angle, 0 <= phi <= 2pi.
* @param[in] P The maximum degree spherical harmonic to compute, P > 0.
* @param[out] Y,dY The output arrays to store Znm and its theta-derivative.
* Each has storage for P*(P+1)/2 elements.
*
* Note this uses the spherical harmonics definition
* Y_n^m(\theta, \phi) =
* \sqrt{\frac{(n-|m|)!}{(n+|m|)!}} P_n^{|m|}(\cos \theta) e^{i m \phi)
* which has symmetries
* Y_n^m(\pi - \theta, \pi + \phi) = (-1)^n Y_n^m(\theta, \phi)
* Y_n^{-m} = (-1)^m conj(Y_n^m)
*
* Note the symmetry in the result of this function
* Z_n^{-m} = (-1)^m conj(Z_n^m)
* where conj denotes complex conjugation.
*
* These are not the spherical harmonics, but are the spherical
* harmonics with the prefactor (often denoted A_n^m) included. These are useful
* for computing multipole and local expansions in an FMM.
*/
inline static
void evalZ(real_type rho, real_type theta, real_type phi, int P,
complex_type* Y, complex_type* dY = nullptr) {
typedef real_type real;
typedef complex_type complex;
using std::cos;
using std::sin;
const real ct = cos(theta);
const real st = sin(theta);
const complex ei = complex(sin(phi),-cos(phi)); // exp(i*phi) i^-1
int m = 0;
int nm;
real Pmm = 1; // Init Legendre Pmm(ct)
real rhom = 1; // Init rho^n / (n+m)!
complex eim = 1; // Init exp(i*m*phi) i^-m
while (true) { // For all 0 <= m < P
// n == m
nm = m*(m+1)/2 + m; // Index of Znm for m > 0
Y[nm] = rhom * Pmm * eim; // Znm for m > 0
if (dY)
dY[nm] = m*ct/st * Y[nm]; // Theta derivative of Znm
// n == m+1
int n = m + 1;
if (n == P) return; // Done! m == P-1
real Pnm = ct * (2*m+1) * Pmm; // P_{m+1}^m(x) = x(2m+1)Pmm
real rhon = rhom * rho / (n+m); // rho^n / (n+m)!
nm += n; // n*(n+1)/2 + m
Y[nm] = rhon * Pnm * eim; // Znm for m > 0
if (dY)
dY[nm] = (n*ct-(n+m)*Pmm/Pnm)/st * Y[nm]; // Theta derivative of Znm
// m+1 < n < P
real Pn1m = Pmm; // P_{n-1}^m
while (++n != P) {
real Pn2m = Pn1m; // P_{n-2}^m
Pn1m = Pnm; // P_{n-1}^m
Pnm = (ct*(2*n-1)*Pn1m-(n+m-1)*Pn2m)/(n-m); // P_n^m recurrence
rhon *= rho / (n + m); // rho^n / (n+m)!
nm += n; // n*(n+1)/2 + m
Y[nm] = rhon * Pnm * eim; // Znm for m > 0
if (dY)
dY[nm] = (n*ct-(n+m)*Pn1m/Pnm)/st * Y[nm];// Theta derivative of Znm
}
++m; // Increment m
rhom *= rho / (2*m*(2*m-1)); // rho^m / (2m)!
Pmm *= -st * (2*m-1); // P_{m+1}^{m+1} recurrence
eim *= ei; // exp(i*m*phi) i^-m
} // End loop over m in Znm
}
示例12: build_topodim2_faces
YAFEL_NAMESPACE_OPEN
static std::vector<std::vector<int>> build_topodim2_faces(const std::vector<coordinate<>> &xi_all,
const std::function<bool(coordinate<>)> &isBoundary,
double theta0)
{
using std::cos;
using std::sin;
double pi = std::atan(1.0) * 4;
auto Theta = [pi](coordinate<> xi) { return std::atan2(xi(1), xi(0)); };
Tensor<3, 2> R;
R(0, 0) = cos(theta0);
R(0, 1) = -sin(theta0);
R(1, 0) = sin(theta0);
R(1, 1) = cos(theta0);
R(2, 2) = 1;
coordinate<> xi0{0.25, 0.25, 0};
std::vector<double> thetaVec;
std::vector<int> bnd_idxs;
int idx = 0;
for (auto xi : xi_all) {
if (isBoundary(xi)) {
bnd_idxs.push_back(idx);
double th = Theta(R * (xi - xi0));
thetaVec.push_back(th);
}
++idx;
}
std::vector<int> tmp_idx(bnd_idxs.size());
idx = 0;
for (auto &i : tmp_idx) {
i = idx++;
}
auto sort_func_f = [&thetaVec](int l, int r) { return thetaVec[l] < thetaVec[r]; };
auto sort_func_r = [&thetaVec](int l, int r) { return thetaVec[l] > thetaVec[r]; };
std::vector<int> f_bnd(tmp_idx);
std::sort(f_bnd.begin(), f_bnd.end(), sort_func_f);
for (auto &f : f_bnd) {
f = bnd_idxs[f];
}
idx = 0;
std::vector<int> r_bnd(tmp_idx);
std::sort(r_bnd.begin(), r_bnd.end(), sort_func_r);
for (auto &r : r_bnd) {
r = bnd_idxs[r];
}
return {f_bnd, r_bnd};
}
示例13: Exact
std::vector<Real> Exact(Real t, const std::vector<Real>& yinit) const
{
using std::sin;
using std::cos;
std::vector<Real> yexact(n);
yexact[q] = yinit[p]/omega*sin(omega*t) + yinit[q]*cos(omega*t);
yexact[p] = yinit[p]*cos(omega*t) - yinit[q]*omega*sin(omega*t);
return yexact;
}
示例14: accumulateLatLon
void Ave::accumulateLatLon(double lat, double lon, double &x, double &y, double &z) {
using std::cos;
using std::sin;
const double u = lon * D2R;
const double v = lat * D2R;
const double w = cos(v);
x += cos(u) * w;
y += sin(u) * w;
z += sin(v);
}
示例15: sph2cart
/** Spherical to cartesian coordinates */
inline static
point_type sph2cart(real_type rho, real_type theta, real_type phi,
const point_type& s) {
using std::cos;
using std::sin;
const real_type st = sin(theta);
const real_type ct = cos(theta);
const real_type sp = sin(phi);
const real_type cp = cos(phi);
return point_type(s[0]*st*cp + s[1]*ct*cp/rho - s[2]*sp/(rho*st),
s[0]*st*sp + s[1]*ct*sp/rho + s[2]*cp/(rho*st),
s[0]*ct - s[1]*st/rho);
}