本文整理匯總了C++中std::conj方法的典型用法代碼示例。如果您正苦於以下問題:C++ std::conj方法的具體用法?C++ std::conj怎麽用?C++ std::conj使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類std
的用法示例。
在下文中一共展示了std::conj方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C++代碼示例。
示例1: gfFluxTE
// TE flux from Green's functions
// extra factor of kp (elsewhere in the integrand) to make dimensionless
// if integrate==true (default), then integral over emitter layer
// done analytically. In this case xs = thickness of layer s
// if integrate==false, then xs is the location of the emitter
cdouble gfFluxTE(const SMatrix &S, const pwaves &pTE,
int l, int s, double zl, double xs, bool integrate) {
cdouble kzl = S.kz[l];
cdouble kzs = S.kz[s];
cdouble kp = S.kp;
cdouble xl = II * kzl * zl;
cdouble A = pTE.Al * exp(xl);
cdouble B = pTE.Bl * exp(-xl);
cdouble C = pTE.Cl * exp(xl);
cdouble D = pTE.Dl * exp(-xl);
cdouble fTE = 0;
int gES[4] = {-1,-1,+1,+1}; // signs in exponent terms
int gHS[4] = {+1,+1,-1,-1};
cdouble (*spaceFx)(int, int, cdouble, double);
if (integrate)
spaceFx = zsInt;
else
spaceFx = zsProd;
// Note the overall neg. sign below
cdouble prefac = II * kp / (4. * kzs) * conj(kzl / kzs);
cdouble gEtt[4] = {A, B, C, D};
cdouble gHpt[4] = {A, -B, C, -D};
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
fTE -= prefac * gEtt[i] * conj(gHpt[j]) * spaceFx(gES[i], gHS[j], kzs, xs);
return fTE;
}
示例2: reflTrans
void reflTrans(const mlgeo &g, double k0, double theta, int pol,
cdouble *r, double *R, cdouble *t, double *T) {
SMatrix S = new SMatrix(g, k0, k0 * sin(theta));
*r = S->S21(0, g.N, pol);
*t = S->S11(0, g.N, pol);
*R = (*r) * conj(*r);
*T = real(sqrt(g.eps(N))) / real(sqrt(g.eps(0))) * (*t) * conj(*t);
}
示例3: conj
Vector<T> Vector<T>::conjugate(const Vector &vec) const
{
iSize = vec.size();
T *vecPtr = new T[iSize];
for(long i = 0; i < iSize; i++)
vecPtr[i] = conj(vec.ptrArray[i]);
return Vector<T>(iSize, vecPtr);
}
示例4: gfFluxTM
// TM flux from Green's functions
cdouble gfFluxTM(const SMatrix &S, const pwaves &pTM,
int l, int s, double zl, double xs, bool integrate) {
cdouble kzl = S.kz[l];
cdouble kzs = S.kz[s];
cdouble kl = S.k[l];
cdouble ks = S.k[s];
cdouble kp = S.kp;
cdouble xl = II * kzl * zl;
cdouble A = pTM.Al * exp(xl);
cdouble B = pTM.Bl * exp(-xl);
cdouble C = pTM.Cl * exp(xl);
cdouble D = pTM.Dl * exp(-xl);
cdouble fTM = 0;
int gES[4] = {-1,-1,+1,+1}; // signs in exponent terms
int gHS[4] = {+1,+1,-1,-1};
cdouble (*spaceFx)(int, int, cdouble, double);
if (integrate)
spaceFx = zsInt;
else
spaceFx = zsProd;
// TM1
cdouble prefac = II * kzl * kp / (4. * ks * kl) * conj(kl / ks);
cdouble gEpp[4] = {A, -B, -C, D};
cdouble gHtp[4] = {-A, -B, C, D};
for(int i=0; i<4; ++i)
for(int j=0; j<4; ++j)
fTM += prefac * gEpp[i] * conj(gHtp[j]) * spaceFx(gES[i], gHS[j], kzs, xs);
// TM2
prefac *= kp * conj(kp) / (kzs * conj(kzs));
cdouble gEpz[4] = {-A, B, -C, D};
cdouble gHtz[4] = {A, B, C, D};
for(int i=0; i<4; ++i)
for(int j=0; j<4; ++j)
fTM += prefac * gEpz[i] * conj(gHtz[j]) * spaceFx(gES[i], gHS[j], kzs, xs);
return fTM;
}
示例5: dZdE_thg
/** Calculates the gradient of the Z error for THG.
*
* \param Esigp the magnitude replaced Esig(t,tau).
* \param Et the current best guess.
* \param dZ the gradient.
*/
void dZdE_thg(const TmexArray &Esigp, const TmexArray &Et, TmexArray &dZ)
{
int M = Esigp.size_M(); // The number of time points.
int N = Esigp.size_N(); // The number of delay points.
TReal sz = Esigp.size();
for(int t0 = 0; t0 < M; ++t0)
{
TCmplx T(0.0,0.0);
for(int tau = 0; tau < N; ++tau) {
int tp = t0 - (tau - N/2);
if (tp >= 0 && tp < M) {
T += (Et[t0] * Et[tp] * Et[tp] - Esigp(t0,tau)) * conj(Et[tp] * Et[tp]);
}
tp = t0 + (tau - N/2);
if (tp >= 0 && tp < M) {
T += 2.0 * conj(Et[tp] * Et[t0]) * (Et[tp] * Et[t0] * Et[t0] - Esigp(tp,tau));
}
}
dZ[t0] = T/sz;
}
}
示例6: zsProd
// product of exponential terms arising in Green's function computations
cdouble zsProd(int s1, int s2, cdouble kzs, double zs) {
return exp(II * zs * (double(s1) * kzs + double(s2) * conj(kzs)));
}