当前位置: 首页>>代码示例>>Python>>正文


Python models.densenet201方法代码示例

本文整理汇总了Python中torchvision.models.densenet201方法的典型用法代码示例。如果您正苦于以下问题:Python models.densenet201方法的具体用法?Python models.densenet201怎么用?Python models.densenet201使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.models的用法示例。


在下文中一共展示了models.densenet201方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: densenet201

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def densenet201(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-201 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet201(num_classes=num_classes, pretrained=False)
    if pretrained is not None:
       # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        settings = pretrained_settings['densenet201'][pretrained]
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(settings['url'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    model = modify_densenets(model)
    return model 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:25,代码来源:torchvision_models.py

示例2: test_untargeted_densenet201

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def test_untargeted_densenet201(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.densenet201(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:19,代码来源:test_attack_Gaussian_blur.py

示例3: Dense201

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def Dense201(config):
    return models.densenet201(pretrained=True) 
开发者ID:ngessert,项目名称:isic2019,代码行数:4,代码来源:models.py

示例4: _load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def _load_pytorch_model(model_name, summary):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    import torch
    if torch.cuda.is_available():
        _model = _model.cuda()
    from perceptron.models.classification.pytorch import PyTorchModel as ClsPyTorchModel
    import numpy as np
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    pmodel = ClsPyTorchModel(
        _model, bounds=(
            0, 1), num_classes=1000, preprocessing=(
            mean, std))
    return pmodel 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:41,代码来源:tools.py

示例5: load_pytorch_model

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def load_pytorch_model(model_name):
    import torchvision.models as models
    switcher = {
        'alexnet': lambda: models.alexnet(pretrained=True).eval(),
        "vgg11": lambda: models.vgg11(pretrained=True).eval(),
        "vgg11_bn": lambda: models.vgg11_bn(pretrained=True).eval(),
        "vgg13": lambda: models.vgg13(pretrained=True).eval(),
        "vgg13_bn": lambda: models.vgg13_bn(pretrained=True).eval(),
        "vgg16": lambda: models.vgg16(pretrained=True).eval(),
        "vgg16_bn": lambda: models.vgg16_bn(pretrained=True).eval(),
        "vgg19": lambda: models.vgg19(pretrained=True).eval(),
        "vgg19_bn": lambda: models.vgg19_bn(pretrained=True).eval(),
        "resnet18": lambda: models.resnet18(pretrained=True).eval(),
        "resnet34": lambda: models.resnet34(pretrained=True).eval(),
        "resnet50": lambda: models.resnet50(pretrained=True).eval(),
        "resnet101": lambda: models.resnet101(pretrained=True).eval(),
        "resnet152": lambda: models.resnet152(pretrained=True).eval(),
        "squeezenet1_0": lambda: models.squeezenet1_0(pretrained=True).eval(),
        "squeezenet1_1": lambda: models.squeezenet1_1(pretrained=True).eval(),
        "densenet121": lambda: models.densenet121(pretrained=True).eval(),
        "densenet161": lambda: models.densenet161(pretrained=True).eval(),
        "densenet201": lambda: models.densenet201(pretrained=True).eval(),
        "inception_v3": lambda: models.inception_v3(pretrained=True).eval(),
    }

    _load_model = switcher.get(model_name, None)
    _model = _load_model()
    return _model 
开发者ID:advboxes,项目名称:perceptron-benchmark,代码行数:30,代码来源:tools.py

示例6: dn201

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def dn201(pre): return children(densenet201(pre))[0] 
开发者ID:alecrubin,项目名称:pytorch-serverless,代码行数:3,代码来源:torch_imports.py

示例7: densenet201

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def densenet201(num_classes=1000, pretrained='imagenet'):
    r"""Densenet-201 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    """
    model = models.densenet201(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['densenet201'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_densenets(model)
    return model 
开发者ID:Cadene,项目名称:pretrained-models.pytorch,代码行数:12,代码来源:torchvision_models.py

示例8: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def __init__(self,option = 'densenet201',pret=True):
        super(DenseBase, self).__init__()
        self.dim = 2048
        if option == 'densenet201':
            model_ft = models.densenet201(pretrained=pret)
            self.dim = 1920
        if option == 'densenet161':
            model_ft = models.densenet161(pretrained=pret)
            self.dim = 2208
        mod = list(model_ft.children())
        #mod.pop()

        self.features = nn.Sequential(*mod) 
开发者ID:mil-tokyo,项目名称:MCD_DA,代码行数:15,代码来源:basenet.py

示例9: __init__

# 需要导入模块: from torchvision import models [as 别名]
# 或者: from torchvision.models import densenet201 [as 别名]
def __init__(self, train_fe=False, feature_extraction_cnn='vgg', normalization=True, last_layer='', use_cuda=True):
        super(FeatureExtraction, self).__init__()
        self.normalization = normalization
        if feature_extraction_cnn == 'vgg':
            self.model = models.vgg16(pretrained=True)
            # keep feature extraction network up to indicated layer
            vgg_feature_layers=['conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1',
                         'relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1',
                         'conv3_2','relu3_2','conv3_3','relu3_3','pool3','conv4_1',
                         'relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','pool4',
                         'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','pool5']
            if last_layer=='':
                last_layer = 'pool4'
            last_layer_idx = vgg_feature_layers.index(last_layer)
            self.model = nn.Sequential(*list(self.model.features.children())[:last_layer_idx+1])
        if feature_extraction_cnn == 'resnet101':
            self.model = models.resnet101(pretrained=True)
            resnet_feature_layers = ['conv1',
                                     'bn1',
                                     'relu',
                                     'maxpool',
                                     'layer1',
                                     'layer2',
                                     'layer3',
                                     'layer4']
            if last_layer=='':
                last_layer = 'layer3'
            last_layer_idx = resnet_feature_layers.index(last_layer)
            resnet_module_list = [self.model.conv1,
                                  self.model.bn1,
                                  self.model.relu,
                                  self.model.maxpool,
                                  self.model.layer1,
                                  self.model.layer2,
                                  self.model.layer3,
                                  self.model.layer4]
            
            self.model = nn.Sequential(*resnet_module_list[:last_layer_idx+1])
        if feature_extraction_cnn == 'resnet101_v2':
            self.model = models.resnet101(pretrained=True)
            # keep feature extraction network up to pool4 (last layer - 7)
            self.model = nn.Sequential(*list(self.model.children())[:-3])
        if feature_extraction_cnn == 'densenet201':
            self.model = models.densenet201(pretrained=True)
            # keep feature extraction network up to denseblock3
            # self.model = nn.Sequential(*list(self.model.features.children())[:-3])
            # keep feature extraction network up to transitionlayer2
            self.model = nn.Sequential(*list(self.model.features.children())[:-4])
        if not train_fe:
            # freeze parameters
            for param in self.model.parameters():
                param.requires_grad = False
        # move to GPU
        if use_cuda:
            self.model = self.model.cuda() 
开发者ID:ignacio-rocco,项目名称:weakalign,代码行数:57,代码来源:cnn_geometric_model.py


注:本文中的torchvision.models.densenet201方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。