当前位置: 首页>>代码示例>>Python>>正文


Python optim.optimizer方法代码示例

本文整理汇总了Python中torch.optim.optimizer方法的典型用法代码示例。如果您正苦于以下问题:Python optim.optimizer方法的具体用法?Python optim.optimizer怎么用?Python optim.optimizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.optim的用法示例。


在下文中一共展示了optim.optimizer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:27,代码来源:optimizers.py

示例2: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def build_optim(opt, model):
    """ Build optimizer """
    optim = Optimizer(
        opt.optim, opt.learning_rate, opt.max_grad_norm,
        lr_decay=opt.learning_rate_decay,
        start_decay_steps=opt.start_decay_steps,
        decay_steps=opt.decay_steps,
        beta1=opt.adam_beta1,
        beta2=opt.adam_beta2,
        adagrad_accum=opt.adagrad_accumulator_init,
        decay_method=opt.decay_method,
        warmup_steps=opt.warmup_steps,
        model_size=opt.encoder_size
    )

    parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
    optim.set_parameters(parameters)

    return optim 
开发者ID:jcyk,项目名称:gtos,代码行数:21,代码来源:optimizer.py

示例3: param_groups

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def param_groups(self):
        param_groups = []
        for optimizer in self.optimizers:
            param_groups.extend(optimizer.param_groups)
        return param_groups 
开发者ID:lizekang,项目名称:ITDD,代码行数:7,代码来源:optimizers.py

示例4: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, model):
        """ ? """
        params = [p for p in model.parameters() if p.requires_grad]
        if self.method == 'sgd':
            self.optimizer = optim.SGD(params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(
                self.params,
                lr=self.learning_rate,
                initial_accumulator_value=self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(params, lr=self.learning_rate)
        elif self.method == 'adafactor':
            self.optimizer = AdaFactor(params, non_constant_decay=True,
                                       enable_factorization=True,
                                       weight_decay=0)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            dense = []
            sparse = []
            for name, param in model.named_parameters():
                if not param.requires_grad:
                    continue
                # TODO: Find a better way to check for sparse gradients.
                if 'embed' in name:
                    sparse.append(param)
                else:
                    dense.append(param)
            self.optimizer = MultipleOptimizer(
                [optim.Adam(dense, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(sparse, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:lizekang,项目名称:ITDD,代码行数:39,代码来源:optimizers.py

示例5: step

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
        """Update the model parameters based on current gradients.

        Optionally, will employ gradient modification or update learning
        rate.
        """
        self._step += 1

        # Decay method used in tensor2tensor.
        if self.decay_method == "noam":
            lr_scale = (
                self.model_size ** (-0.5) *
                min(self._step ** (-0.5),
                    self._step * self.warmup_steps**(-1.5)))
        # Decay based on start_decay_steps every decay_steps
        elif self.start_decay_steps is not None:
            step = self._step - self.start_decay_steps
            lr_scale = (self.lr_decay ** (
                max(step + self.decay_steps, 0) // self.decay_steps))
        else:
            lr_scale = 1

        self.learning_rate = lr_scale * self.original_lr
        for group in self.optimizer.param_groups:
            if self.method != 'adafactor':
                group['lr'] = self.learning_rate
            if self.max_grad_norm:
                clip_grad_norm_(group['params'], self.max_grad_norm)
        self.optimizer.step()

# Code below is an implementation of https://arxiv.org/pdf/1804.04235.pdf
# inspired but modified from https://github.com/DeadAt0m/adafactor-pytorch 
开发者ID:lizekang,项目名称:ITDD,代码行数:34,代码来源:optimizers.py

示例6: build_optim

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def build_optim(model, opt, checkpoint):
    """ Build optimizer """
    saved_optimizer_state_dict = None

    if opt.train_from:
        optim = checkpoint['optim']
        # We need to save a copy of optim.optimizer.state_dict() for setting
        # the, optimizer state later on in Stage 2 in this method, since
        # the method optim.set_parameters(model.parameters()) will overwrite
        # optim.optimizer, and with ith the values stored in
        # optim.optimizer.state_dict()
        saved_optimizer_state_dict = optim.optimizer.state_dict()
    else:
        optim = Optimizer(
            opt.optim, opt.learning_rate, opt.max_grad_norm,
            lr_decay=opt.learning_rate_decay,
            start_decay_steps=opt.start_decay_steps,
            decay_steps=opt.decay_steps,
            beta1=opt.adam_beta1,
            beta2=opt.adam_beta2,
            adagrad_accum=opt.adagrad_accumulator_init,
            decay_method=opt.decay_method,
            warmup_steps=opt.warmup_steps)

    optim.set_parameters(model.named_parameters())

    if opt.train_from:
        optim.optimizer.load_state_dict(saved_optimizer_state_dict)
        if use_gpu(opt):
            for state in optim.optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

        if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
            raise RuntimeError(
                "Error: loaded Adam optimizer from existing model" +
                " but optimizer state is empty")

    return optim 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:42,代码来源:optimizers.py

示例7: _set_rate

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def _set_rate(self, learning_rate):
        self.learning_rate = learning_rate
        if self.method != 'sparseadam':
            self.optimizer.param_groups[0]['lr'] = self.learning_rate
        else:
            for op in self.optimizer.optimizers:
                op.param_groups[0]['lr'] = self.learning_rate 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:9,代码来源:optimizers.py

示例8: step

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
        """Update the model parameters based on current gradients.

        Optionally, will employ gradient modification or update learning
        rate.
        """
        self._step += 1

        # Decay method used in tensor2tensor.
        if self.decay_method == "noam":
            self._set_rate(
                self.original_lr *
                 min(self._step ** (-0.5),
                     self._step * self.warmup_steps**(-1.5)))

        else:
            if ((self.start_decay_steps is not None) and (
                     self._step >= self.start_decay_steps)):
                self.start_decay = True
            if self.start_decay:
                if ((self._step - self.start_decay_steps)
                   % self.decay_steps == 0):
                    self.learning_rate = self.learning_rate * self.lr_decay

        if self.method != 'sparseadam':
            self.optimizer.param_groups[0]['lr'] = self.learning_rate

        if self.max_grad_norm:
            clip_grad_norm_(self.params, self.max_grad_norm)
        self.optimizer.step() 
开发者ID:nlpyang,项目名称:PreSumm,代码行数:32,代码来源:optimizers.py

示例9: lr

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def lr(self):
        if self.method != 'sparseadam':
            return self.optimizer.param_groups[0]['lr']
        else:
            return max(op.param_groups[0]['lr'] for op in self.optimizer.optimizers) 
开发者ID:jcyk,项目名称:gtos,代码行数:7,代码来源:optimizer.py

示例10: state_dict

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def state_dict(self):
        return self.optimizer.state_dict() 
开发者ID:jcyk,项目名称:gtos,代码行数:4,代码来源:optimizer.py

示例11: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-8, weight_decay=3e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:jcyk,项目名称:gtos,代码行数:33,代码来源:optimizer.py

示例12: set_state

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_state(self, state_dict):
        """
        If you want to load the checkpoint of an optimizer, call this function after set_parameters.
        Because the method optim.set_parameters(model.parameters()) will overwrite optim.optimizer,
        and with ith the values stored in optim.optimizer.state_dict()
        """
        self.optimizer.load_state_dict(state_dict)
        # Convert back the state values to cuda type if applicable
        for state in self.optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(self.device) 
开发者ID:jcyk,项目名称:gtos,代码行数:14,代码来源:optimizer.py

示例13: zero_grad

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def zero_grad(self):
        self.optimizer.zero_grad() 
开发者ID:jcyk,项目名称:gtos,代码行数:4,代码来源:optimizer.py

示例14: step

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
        """Update the model parameters based on current gradients.
        Optionally, will employ gradient modification or update learning
        rate.
        """
        self._step += 1

        # Decay method used in tensor2tensor.
        if self.decay_method == "noam":
            self._set_rate(
                self.original_lr *
                (self.model_size ** (-0.5) *
                 min(self._step ** (-0.5),
                     self._step * self.warmup_steps**(-1.5))))
        # Decay based on start_decay_steps every decay_steps
        else:
            if ((self.start_decay_steps is not None) and (
                     self._step >= self.start_decay_steps)):
                self.start_decay = True
            if self.start_decay:
                if ((self._step - self.start_decay_steps)
                   % self.decay_steps == 0):
                    self.learning_rate = self.learning_rate * self.lr_decay

        if self.method != 'sparseadam':
            self.optimizer.param_groups[0]['lr'] = self.learning_rate

        if self.max_grad_norm:
            clip_grad_norm_(self.params, self.max_grad_norm)
        self.optimizer.step() 
开发者ID:jcyk,项目名称:gtos,代码行数:32,代码来源:optimizer.py

示例15: set_parameters

# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
        """ ? """
        self.params = []
        self.sparse_params = []
        for k, p in params:
            if p.requires_grad:
                if self.method != 'sparseadam' or "embed" not in k:
                    self.params.append(p)
                else:
                    self.sparse_params.append(p)
        if self.method == 'sgd':
            self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
        elif self.method == 'adagrad':
            self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    self.optimizer.state[p]['sum'] = self.optimizer\
                        .state[p]['sum'].fill_(self.adagrad_accum)
        elif self.method == 'adadelta':
            self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
        elif self.method == 'adam':
            self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
                                        betas=self.betas, eps=1e-9)
        elif self.method == 'sparseadam':
            self.optimizer = MultipleOptimizer(
                [optim.Adam(self.params, lr=self.learning_rate,
                            betas=self.betas, eps=1e-8),
                 optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
                                  betas=self.betas, eps=1e-8)])
        else:
            raise RuntimeError("Invalid optim method: " + self.method) 
开发者ID:nlpyang,项目名称:BertSum,代码行数:33,代码来源:optimizers.py


注:本文中的torch.optim.optimizer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。