本文整理汇总了Python中torch.optim.optimizer方法的典型用法代码示例。如果您正苦于以下问题:Python optim.optimizer方法的具体用法?Python optim.optimizer怎么用?Python optim.optimizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.optim
的用法示例。
在下文中一共展示了optim.optimizer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_parameters
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
""" ? """
self.params = []
self.sparse_params = []
for k, p in params:
if p.requires_grad:
if self.method != 'sparseadam' or "embed" not in k:
self.params.append(p)
else:
self.sparse_params.append(p)
if self.method == 'sgd':
self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
for group in self.optimizer.param_groups:
for p in group['params']:
self.optimizer.state[p]['sum'] = self.optimizer\
.state[p]['sum'].fill_(self.adagrad_accum)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
elif self.method == 'adam':
self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
betas=self.betas, eps=1e-9)
else:
raise RuntimeError("Invalid optim method: " + self.method)
示例2: build_optim
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def build_optim(opt, model):
""" Build optimizer """
optim = Optimizer(
opt.optim, opt.learning_rate, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay,
start_decay_steps=opt.start_decay_steps,
decay_steps=opt.decay_steps,
beta1=opt.adam_beta1,
beta2=opt.adam_beta2,
adagrad_accum=opt.adagrad_accumulator_init,
decay_method=opt.decay_method,
warmup_steps=opt.warmup_steps,
model_size=opt.encoder_size
)
parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
optim.set_parameters(parameters)
return optim
示例3: param_groups
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def param_groups(self):
param_groups = []
for optimizer in self.optimizers:
param_groups.extend(optimizer.param_groups)
return param_groups
示例4: set_parameters
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, model):
""" ? """
params = [p for p in model.parameters() if p.requires_grad]
if self.method == 'sgd':
self.optimizer = optim.SGD(params, lr=self.learning_rate)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(
self.params,
lr=self.learning_rate,
initial_accumulator_value=self.adagrad_accum)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(params, lr=self.learning_rate)
elif self.method == 'adafactor':
self.optimizer = AdaFactor(params, non_constant_decay=True,
enable_factorization=True,
weight_decay=0)
elif self.method == 'adam':
self.optimizer = optim.Adam(params, lr=self.learning_rate,
betas=self.betas, eps=1e-9)
elif self.method == 'sparseadam':
dense = []
sparse = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# TODO: Find a better way to check for sparse gradients.
if 'embed' in name:
sparse.append(param)
else:
dense.append(param)
self.optimizer = MultipleOptimizer(
[optim.Adam(dense, lr=self.learning_rate,
betas=self.betas, eps=1e-8),
optim.SparseAdam(sparse, lr=self.learning_rate,
betas=self.betas, eps=1e-8)])
else:
raise RuntimeError("Invalid optim method: " + self.method)
示例5: step
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
"""Update the model parameters based on current gradients.
Optionally, will employ gradient modification or update learning
rate.
"""
self._step += 1
# Decay method used in tensor2tensor.
if self.decay_method == "noam":
lr_scale = (
self.model_size ** (-0.5) *
min(self._step ** (-0.5),
self._step * self.warmup_steps**(-1.5)))
# Decay based on start_decay_steps every decay_steps
elif self.start_decay_steps is not None:
step = self._step - self.start_decay_steps
lr_scale = (self.lr_decay ** (
max(step + self.decay_steps, 0) // self.decay_steps))
else:
lr_scale = 1
self.learning_rate = lr_scale * self.original_lr
for group in self.optimizer.param_groups:
if self.method != 'adafactor':
group['lr'] = self.learning_rate
if self.max_grad_norm:
clip_grad_norm_(group['params'], self.max_grad_norm)
self.optimizer.step()
# Code below is an implementation of https://arxiv.org/pdf/1804.04235.pdf
# inspired but modified from https://github.com/DeadAt0m/adafactor-pytorch
示例6: build_optim
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def build_optim(model, opt, checkpoint):
""" Build optimizer """
saved_optimizer_state_dict = None
if opt.train_from:
optim = checkpoint['optim']
# We need to save a copy of optim.optimizer.state_dict() for setting
# the, optimizer state later on in Stage 2 in this method, since
# the method optim.set_parameters(model.parameters()) will overwrite
# optim.optimizer, and with ith the values stored in
# optim.optimizer.state_dict()
saved_optimizer_state_dict = optim.optimizer.state_dict()
else:
optim = Optimizer(
opt.optim, opt.learning_rate, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay,
start_decay_steps=opt.start_decay_steps,
decay_steps=opt.decay_steps,
beta1=opt.adam_beta1,
beta2=opt.adam_beta2,
adagrad_accum=opt.adagrad_accumulator_init,
decay_method=opt.decay_method,
warmup_steps=opt.warmup_steps)
optim.set_parameters(model.named_parameters())
if opt.train_from:
optim.optimizer.load_state_dict(saved_optimizer_state_dict)
if use_gpu(opt):
for state in optim.optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
if (optim.method == 'adam') and (len(optim.optimizer.state) < 1):
raise RuntimeError(
"Error: loaded Adam optimizer from existing model" +
" but optimizer state is empty")
return optim
示例7: _set_rate
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def _set_rate(self, learning_rate):
self.learning_rate = learning_rate
if self.method != 'sparseadam':
self.optimizer.param_groups[0]['lr'] = self.learning_rate
else:
for op in self.optimizer.optimizers:
op.param_groups[0]['lr'] = self.learning_rate
示例8: step
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
"""Update the model parameters based on current gradients.
Optionally, will employ gradient modification or update learning
rate.
"""
self._step += 1
# Decay method used in tensor2tensor.
if self.decay_method == "noam":
self._set_rate(
self.original_lr *
min(self._step ** (-0.5),
self._step * self.warmup_steps**(-1.5)))
else:
if ((self.start_decay_steps is not None) and (
self._step >= self.start_decay_steps)):
self.start_decay = True
if self.start_decay:
if ((self._step - self.start_decay_steps)
% self.decay_steps == 0):
self.learning_rate = self.learning_rate * self.lr_decay
if self.method != 'sparseadam':
self.optimizer.param_groups[0]['lr'] = self.learning_rate
if self.max_grad_norm:
clip_grad_norm_(self.params, self.max_grad_norm)
self.optimizer.step()
示例9: lr
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def lr(self):
if self.method != 'sparseadam':
return self.optimizer.param_groups[0]['lr']
else:
return max(op.param_groups[0]['lr'] for op in self.optimizer.optimizers)
示例10: state_dict
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def state_dict(self):
return self.optimizer.state_dict()
示例11: set_parameters
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
""" ? """
self.params = []
self.sparse_params = []
for k, p in params:
if p.requires_grad:
if self.method != 'sparseadam' or "embed" not in k:
self.params.append(p)
else:
self.sparse_params.append(p)
if self.method == 'sgd':
self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
for group in self.optimizer.param_groups:
for p in group['params']:
self.optimizer.state[p]['sum'] = self.optimizer\
.state[p]['sum'].fill_(self.adagrad_accum)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
elif self.method == 'adam':
self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
betas=self.betas, eps=1e-8, weight_decay=3e-9)
elif self.method == 'sparseadam':
self.optimizer = MultipleOptimizer(
[optim.Adam(self.params, lr=self.learning_rate,
betas=self.betas, eps=1e-8),
optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
betas=self.betas, eps=1e-8)])
else:
raise RuntimeError("Invalid optim method: " + self.method)
示例12: set_state
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_state(self, state_dict):
"""
If you want to load the checkpoint of an optimizer, call this function after set_parameters.
Because the method optim.set_parameters(model.parameters()) will overwrite optim.optimizer,
and with ith the values stored in optim.optimizer.state_dict()
"""
self.optimizer.load_state_dict(state_dict)
# Convert back the state values to cuda type if applicable
for state in self.optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.to(self.device)
示例13: zero_grad
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def zero_grad(self):
self.optimizer.zero_grad()
示例14: step
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def step(self):
"""Update the model parameters based on current gradients.
Optionally, will employ gradient modification or update learning
rate.
"""
self._step += 1
# Decay method used in tensor2tensor.
if self.decay_method == "noam":
self._set_rate(
self.original_lr *
(self.model_size ** (-0.5) *
min(self._step ** (-0.5),
self._step * self.warmup_steps**(-1.5))))
# Decay based on start_decay_steps every decay_steps
else:
if ((self.start_decay_steps is not None) and (
self._step >= self.start_decay_steps)):
self.start_decay = True
if self.start_decay:
if ((self._step - self.start_decay_steps)
% self.decay_steps == 0):
self.learning_rate = self.learning_rate * self.lr_decay
if self.method != 'sparseadam':
self.optimizer.param_groups[0]['lr'] = self.learning_rate
if self.max_grad_norm:
clip_grad_norm_(self.params, self.max_grad_norm)
self.optimizer.step()
示例15: set_parameters
# 需要导入模块: from torch import optim [as 别名]
# 或者: from torch.optim import optimizer [as 别名]
def set_parameters(self, params):
""" ? """
self.params = []
self.sparse_params = []
for k, p in params:
if p.requires_grad:
if self.method != 'sparseadam' or "embed" not in k:
self.params.append(p)
else:
self.sparse_params.append(p)
if self.method == 'sgd':
self.optimizer = optim.SGD(self.params, lr=self.learning_rate)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(self.params, lr=self.learning_rate)
for group in self.optimizer.param_groups:
for p in group['params']:
self.optimizer.state[p]['sum'] = self.optimizer\
.state[p]['sum'].fill_(self.adagrad_accum)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(self.params, lr=self.learning_rate)
elif self.method == 'adam':
self.optimizer = optim.Adam(self.params, lr=self.learning_rate,
betas=self.betas, eps=1e-9)
elif self.method == 'sparseadam':
self.optimizer = MultipleOptimizer(
[optim.Adam(self.params, lr=self.learning_rate,
betas=self.betas, eps=1e-8),
optim.SparseAdam(self.sparse_params, lr=self.learning_rate,
betas=self.betas, eps=1e-8)])
else:
raise RuntimeError("Invalid optim method: " + self.method)