本文整理汇总了Python中tensorflow.python.util.nest.pack_sequence_as方法的典型用法代码示例。如果您正苦于以下问题:Python nest.pack_sequence_as方法的具体用法?Python nest.pack_sequence_as怎么用?Python nest.pack_sequence_as使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.util.nest
的用法示例。
在下文中一共展示了nest.pack_sequence_as方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: transpose_batch_time
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def transpose_batch_time(inputs):
"""Transposes inputs between time-major and batch-major.
Args:
inputs: A Tensor of shape `[batch_size, max_time, ...]` (batch-major)
or `[max_time, batch_size, ...]` (time-major), or a (possibly
nested) tuple of such elements.
Returns:
A (possibly nested tuple of) Tensor with transposed batch and
time dimensions of inputs.
"""
flat_input = nest.flatten(inputs)
flat_input = [ops.convert_to_tensor(input_) for input_ in flat_input]
# pylint: disable=protected-access
flat_input = [rnn._transpose_batch_time(input_) for input_ in flat_input]
return nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input)
示例2: _create
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def _create(self):
# Concat bridge inputs on the depth dimensions
bridge_input = nest.map_structure(
lambda x: tf.reshape(x, [self.batch_size, _total_tensor_depth(x)]),
self._bridge_input)
bridge_input_flat = nest.flatten([bridge_input])
bridge_input_concat = tf.concat(bridge_input_flat, axis=1)
state_size_splits = nest.flatten(self.decoder_state_size)
total_decoder_state_size = sum(state_size_splits)
# Pass bridge inputs through a fully connected layer layer
initial_state_flat = tf.contrib.layers.fully_connected(
bridge_input_concat,
num_outputs=total_decoder_state_size,
activation_fn=self._activation_fn,
weights_initializer=tf.truncated_normal_initializer(
stddev=self.parameter_init),
biases_initializer=tf.zeros_initializer(),
scope=None)
# Shape back into required state size
initial_state = tf.split(initial_state_flat, state_size_splits, axis=1)
return nest.pack_sequence_as(self.decoder_state_size, initial_state)
示例3: get_next
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def get_next(self, name=None):
"""Returns a nested structure of `tf.Tensor`s containing the next element.
Args:
name: (Optional.) A name for the created operation.
Returns:
A nested structure of `tf.Tensor` objects.
"""
return nest.pack_sequence_as(
self._output_types,
gen_dataset_ops.iterator_get_next(
self._iterator_resource,
output_types=nest.flatten(self._output_types),
output_shapes=nest.flatten(self._output_shapes),
name=name))
示例4: _zero_state
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def _zero_state(self, img, att, presence, state, transform_features, transform_state=False):
with tf.variable_scope(self.__class__.__name__) as vs:
features = self.extract_features(img, att)[1]
if transform_features:
features_flat = tf.reshape(features, (-1, self.n_units))
features_flat = AffineLayer(features_flat, self.n_units, name='init_feature_transform').output
features = tf.reshape(features_flat, tf.shape(features))
rnn_outputs, hidden_state = self._propagate(features, state)
hidden_state = nest.flatten(hidden_state)
if transform_state:
for i, hs in enumerate(hidden_state):
name = 'init_state_transform_{}'.format(i)
hidden_state[i] = AffineLayer(hs, self.n_units, name=name).output
state = nest.pack_sequence_as(structure=state, flat_sequence=hidden_state)
self.rnn_vs = vs
return state, rnn_outputs
示例5: unflatten_features_and_labels
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def unflatten_features_and_labels(self, flattened_inputs):
"""Restores the flattened inputs to original features and labels form.
Args:
flattened_inputs: Flattened inputs for each shard.
Returns:
A tuple of (`features`, `labels`), where `labels` could be None.
Each one, if present, should have identical structure (single tensor vs
dict) as the one returned by input_fn.
Raises:
ValueError: If the number of expected tensors from `flattened_inputs`
mismatches the recorded structure.
"""
unflattened_inputs = data_nest.pack_sequence_as(self._feature_structure,
flattened_inputs)
return _Inputs(
unflattened_inputs['features'],
unflattened_inputs.get('labels'),
signals=unflattened_inputs.get('signals'))
示例6: map_nested
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def map_nested(map_fn, nested):
"""Executes map_fn on every element in a (potentially) nested structure.
Args:
map_fn: A callable to execute on each element in 'nested'.
nested: A potentially nested combination of sequence objects. Sequence
objects include tuples, lists, namedtuples, and all subclasses of
collections.Sequence except strings. See nest.is_sequence for details.
For example [1, ('hello', 4.3)] is a nested structure containing elements
1, 'hello', and 4.3.
Returns:
out_structure: A potentially nested combination of sequence objects with the
same structure as the 'nested' input argument. out_structure
contains the result of applying map_fn to each element in 'nested'. For
example map_nested(lambda x: x+1, [1, (3, 4.3)]) returns [2, (4, 5.3)].
"""
out = map(map_fn, nest.flatten(nested))
return nest.pack_sequence_as(nested, out)
示例7: map_nested
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def map_nested(map_fn, nested):
"""Executes map_fn on every element in a (potentially) nested structure.
Args:
map_fn: A callable to execute on each element in 'nested'.
nested: A potentially nested combination of sequence objects. Sequence
objects include tuples, lists, namedtuples, and all subclasses of
collections.Sequence except strings. See nest.is_sequence for details.
For example [1, ('hello', 4.3)] is a nested structure containing elements
1, 'hello', and 4.3.
Returns:
out_structure: A potentially nested combination of sequence objects with the
same structure as the 'nested' input argument. out_structure
contains the result of applying map_fn to each element in 'nested'. For
example map_nested(lambda x: x+1, [1, (3, 4.3)]) returns [2, (4, 5.3)].
"""
out = list(map(map_fn, nest.flatten(nested)))
return nest.pack_sequence_as(nested, out)
示例8: trainable_initial_state
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def trainable_initial_state(batch_size, state_size,
initializer=None, name="initial_state"):
flat_state_size = nest.flatten(state_size)
if not initializer:
flat_initializer = tuple(tf.zeros_initializer for _ in flat_state_size)
else:
flat_initializer = tuple(tf.zeros_initializer for initializer in flat_state_size)
names = ["{}_{}".format(name, i) for i in xrange(len(flat_state_size))]
tiled_states = []
for name, size, init in zip(names, flat_state_size, flat_initializer):
shape_with_batch_dim = [1, size]
initial_state_variable = tf.get_variable(
name, shape=shape_with_batch_dim, initializer=init())
tiled_state = tf.tile(initial_state_variable,
[batch_size, 1], name=(name + "_tiled"))
tiled_states.append(tiled_state)
return nest.pack_sequence_as(structure=state_size,
flat_sequence=tiled_states)
示例9: static_rnn
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def static_rnn(cell, inputs, scope=None):
"""Simple version of static_rnn."""
with tf.variable_scope(scope or "rnn") as varscope:
batch_size = dimension(inputs, axis=1)
state = cell.zero_state(batch_size, tf.float32)
flat_inputs = nest.flatten(inputs)
flat_inputs = list(zip(*[tf.unstack(flat_input, axis=0) for flat_input in flat_inputs]))
flat_outputs = []
for time, flat_input in enumerate(flat_inputs):
if time > 0:
varscope.reuse_variables()
input_ = nest.pack_sequence_as(inputs, flat_input)
output, state = cell(input_, state)
flat_output = nest.flatten(output)
flat_outputs.append(flat_output)
flat_outputs = [tf.stack(flat_output, axis=0) for flat_output in zip(*flat_outputs)]
outputs = nest.pack_sequence_as(output, flat_outputs)
return outputs, state
示例10: gather_states
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def gather_states(states, beam_ids):
""" Gathers states according to beam ids.
Args:
states: A Tensor of a list/tuple/dict of Tensors. For each Tensor, the first
dimension must be batch_size, otherwise, unknow errors may occur.
beam_ids: A tensor with shape [batch_size, ] that used to gather states.
Returns: A Tensor or a list/tuple of Tensors with the same structure
as `states`.
"""
def _gather(x):
assert isinstance(x, tf.Tensor)
return tf.gather(x, beam_ids)
return nest.pack_sequence_as(
states,
nest.map_structure(
_gather, nest.flatten(states)))
示例11: batch
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def batch(self, batch_size=None):
"""Get a batch of tensors."""
if self.produces_batches:
assert batch_size is None, 'Cannot enforce a batch size if `func()` returns batches!'
flat_batch = self._queue.dequeue()
for name, pl in self.flat_placeholders.items():
flat_batch[name].set_shape(pl.shape)
else:
flat_batch = self._queue.dequeue_many(batch_size)
batch = Struct()
for name, pl in self.placeholders.items():
flat_vals = sorted((k, v)
for k, v in flat_batch.items() if k.startswith(name))
vals = [v for k, v in flat_vals]
batch[name] = vals[0] if len(
vals) == 0 else nest.pack_sequence_as(pl, vals)
return batch
示例12: where_tensors
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def where_tensors(condition, x_tensors, y_tensors):
"""Performs a tf.where operation on a two sets of Tensors.
Args:
condition: The condition tensor to use for the where operation.
x_tensors: A potentially nested tuple or list of Tensors.
y_tensors: A potentially nested tuple or list of Tensors. Must have the
same structure as x_tensors.
Returns:
whered_tensors: A potentially nested tuple or list of Tensors with the
same structure as the 'tensors' input argument. Contains the result of
applying tf.where(condition, x, y) on each pair of elements in x_tensors
and y_tensors.
"""
flat_x = nest.flatten(x_tensors)
flat_y = nest.flatten(y_tensors)
result = [tf.where(condition, x, y) for x, y in
itertools.izip(flat_x, flat_y)]
return nest.pack_sequence_as(x_tensors, result)
示例13: _forward
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def _forward(self, x1, x2):
"""Run forward through the reversible layers."""
side_inputs = [self.f_side_input, self.g_side_input]
flat_side_inputs = nest.flatten(side_inputs)
def _forward_wrap(x1_, x2_, *flat_side_inputs):
f_side, g_side = nest.pack_sequence_as(side_inputs, flat_side_inputs)
return _rev_block_forward(
x1_,
x2_,
self.f,
self.g,
num_layers=self.num_layers,
f_side_input=f_side,
g_side_input=g_side,
gate_outputs=self._use_efficient_backprop)
@custom_gradient.custom_gradient
def _forward_with_custom_grad(*args):
out = _forward_wrap(*args) # pylint: disable=no-value-for-parameter
grad_fn = self._make_efficient_grad_fn(args, out)
return out, grad_fn
if self._use_efficient_backprop:
return _forward_with_custom_grad(x1, x2, *flat_side_inputs)
else:
return _forward_wrap(x1, x2, *flat_side_inputs)
示例14: BuildLoop
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def BuildLoop(self, pred, body, loop_vars, shape_invariants):
"""Add the loop termination condition and body to the graph."""
# Keep original_loop_vars to identify which are TensorArrays
original_loop_vars = loop_vars
# Convert TensorArrays to their flow variables
loop_vars = nest.map_structure(_convert_tensorarray_to_flow,
nest.flatten(loop_vars))
loop_vars = ops.convert_n_to_tensor_or_indexed_slices(loop_vars)
try:
self.Enter()
original_body_result, exit_vars = self._BuildLoop(
pred, body, original_loop_vars, loop_vars, shape_invariants)
finally:
self.Exit()
flat_result = nest.flatten(original_body_result)
# Convert TensorArray flow variables outside the context back into
# their associated TensorArrays for returning to caller.
exit_vars_with_tensor_arrays = (
_convert_flows_to_tensorarrays(flat_result, exit_vars))
packed_exit_vars = nest.pack_sequence_as(
structure=original_body_result,
flat_sequence=exit_vars_with_tensor_arrays)
return (packed_exit_vars[0] if len(exit_vars) == 1
else packed_exit_vars)
示例15: __init__
# 需要导入模块: from tensorflow.python.util import nest [as 别名]
# 或者: from tensorflow.python.util.nest import pack_sequence_as [as 别名]
def __init__(self, tensors):
"""See `Dataset.from_tensors()` for details."""
super(TensorDataset, self).__init__()
with ops.name_scope("tensors"):
self._tensors = nest.pack_sequence_as(tensors, [
ops.convert_to_tensor(t, name="component_%d" % i)
for i, t in enumerate(nest.flatten(tensors))
])