当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.identity方法代码示例

本文整理汇总了Python中tensorflow.identity方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.identity方法的具体用法?Python tensorflow.identity怎么用?Python tensorflow.identity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.identity方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_forward

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def build_forward(self):
		verbalise = self.FLAGS.verbalise

		# Placeholders
		inp_size = [None] + self.meta['inp_size']
		self.inp = tf.placeholder(tf.float32, inp_size, 'input')
		self.feed = dict() # other placeholders

		# Build the forward pass
		state = identity(self.inp)
		roof = self.num_layer - self.ntrain
		self.say(HEADER, LINE)
		for i, layer in enumerate(self.darknet.layers):
			scope = '{}-{}'.format(str(i),layer.type)
			args = [layer, state, i, roof, self.feed]
			state = op_create(*args)
			mess = state.verbalise()
			self.say(mess)
		self.say(LINE)

		self.top = state
		self.out = tf.identity(state.out, name='output') 
开发者ID:AmeyaWagh,项目名称:Traffic_sign_detection_YOLO,代码行数:24,代码来源:build.py

示例2: autosummary

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def autosummary(name, value):
    id = name.replace('/', '_')
    if is_tf_expression(value):
        with tf.name_scope('summary_' + id), tf.device(value.device):
            update_op = _create_autosummary_var(name, value)
            with tf.control_dependencies([update_op]):
                return tf.identity(value)
    else: # python scalar or numpy array
        if name not in _autosummary_immediate:
            with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
                update_value = tf.placeholder(tf.float32)
                update_op = _create_autosummary_var(name, update_value)
                _autosummary_immediate[name] = update_op, update_value
        update_op, update_value = _autosummary_immediate[name]
        run(update_op, {update_value: np.float32(value)})
        return value

# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:21,代码来源:tfutil.py

示例3: _lm_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def _lm_loss(self,
               inputs,
               emb_key='lm_embedded',
               lstm_layer='lstm',
               lm_loss_layer='lm_loss',
               loss_name='lm_loss',
               compute_loss=True):
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors[emb_key] = embedded
    lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state,
                                                   inputs.length)
    if compute_loss:
      loss = self.layers[lm_loss_layer](
          [lstm_out, inputs.labels, inputs.weights])
      with tf.control_dependencies([inputs.save_state(next_state)]):
        loss = tf.identity(loss)
        tf.summary.scalar(loss_name, loss)

      return loss 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:graphs.py

示例4: build_structured_training

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def build_structured_training(self, state, network_states):
    """Builds a beam search based training loop for this component.

    The default implementation builds a dummy graph and raises a
    TensorFlow runtime exception to indicate that structured training
    is not implemented.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
        underlying master to this component.
      network_states: dictionary of component NetworkState objects.

    Returns:
      (handle, cost, correct, total) -- These are TF ops corresponding
      to the final handle after unrolling, the total cost, and the
      total number of actions. Since the number of correctly predicted
      actions is not applicable in the structured training setting, a
      dummy value should returned.
    """
    del network_states  # Unused.
    with tf.control_dependencies([tf.Assert(False, ['Not implemented.'])]):
      handle = tf.identity(state.handle)
    cost = tf.constant(0.)
    correct, total = tf.constant(0), tf.constant(0)
    return handle, cost, correct, total 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:component.py

示例5: _update_value_step

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def _update_value_step(self, observ, reward, length):
    """Compute the current value loss and perform a gradient update step.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Tuple of loss tensor and summary tensor.
    """
    loss, summary = self._value_loss(observ, reward, length)
    gradients, variables = (
        zip(*self._value_optimizer.compute_gradients(loss)))
    optimize = self._value_optimizer.apply_gradients(
        zip(gradients, variables))
    summary = tf.summary.merge([
        summary,
        tf.summary.scalar('gradient_norm', tf.global_norm(gradients)),
        utility.gradient_summaries(
            zip(gradients, variables), dict(value=r'.*'))])
    with tf.control_dependencies([optimize]):
      return [tf.identity(loss), tf.identity(summary)] 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:25,代码来源:algorithm.py

示例6: reset

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:24,代码来源:in_graph_batch_env.py

示例7: simulate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def simulate(self, action):

    # There is subtlety here. We need to collect data
    # obs, action = policy(obs), done, reward = env(abs, action)
    # Thus we need to enqueue data before assigning new observation

    reward, done = self._batch_env.simulate(action)

    with tf.control_dependencies([reward, done]):
      enqueue_op = self.speculum.enqueue(
          [self._observ.read_value(), reward, done, action])

    with tf.control_dependencies([enqueue_op]):
      assign = self._observ.assign(self._batch_env.observ)

    with tf.control_dependencies([assign]):
      return tf.identity(reward), tf.identity(done) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:19,代码来源:collect.py

示例8: simulate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros_like(self._observ),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          # TODO(piotrmilos): possibly ignore envs with done
          r0 = tf.maximum(a[0], self._batch_env.observ)
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)

          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      simulate_ret = [ret[-1, ...] for ret in simulate_ret]

      with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
        return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2]) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:tf_atari_wrappers.py

示例9: simulate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      reward.set_shape((len(self),))
      done.set_shape((len(self),))
      with tf.control_dependencies([self._observ.assign(observ)]):
        return tf.identity(reward), tf.identity(done) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:26,代码来源:py_func_batch_env.py

示例10: _reset_non_empty

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def _reset_non_empty(self, indices):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ)]):
      return tf.identity(observ) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:18,代码来源:py_func_batch_env.py

示例11: weight_decay_and_noise

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def weight_decay_and_noise(loss, hparams, learning_rate, var_list=None):
  """Apply weight decay and weight noise."""
  if var_list is None:
    var_list = tf.trainable_variables()

  decay_vars = [v for v in var_list]
  noise_vars = [v for v in var_list if "/body/" in v.name]

  weight_decay_loss = weight_decay(hparams.weight_decay, decay_vars)
  if hparams.weight_decay:
    tf.summary.scalar("losses/weight_decay", weight_decay_loss)
  weight_noise_ops = weight_noise(hparams.weight_noise, learning_rate,
                                  noise_vars)

  with tf.control_dependencies(weight_noise_ops):
    loss = tf.identity(loss)

  loss += weight_decay_loss
  return loss 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:21,代码来源:optimize.py

示例12: get_channel_embeddings

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def get_channel_embeddings(self,
                             io_depth,
                             targets,
                             hidden_size,
                             name="channel"):
    """Get separate embedding for each of the channels."""
    targets_split = tf.split(targets, io_depth, axis=3)
    rgb_embedding_var = tf.get_variable("rgb_target_emb_%s" % name,
                                        [256 * io_depth, hidden_size])
    rgb_embedding_var = tf.identity(rgb_embedding_var)
    rgb_embedding_var *= float(hidden_size)**0.5
    channel_target_embs = []
    for i in range(io_depth):
      # Adding the channel offsets to get the right embedding since the
      # embedding tensor has shape 256 * io_depth, hidden_size
      target_ids = tf.squeeze(targets_split[i], axis=3) + i * 256
      target_embs = common_layers.gather(rgb_embedding_var, target_ids)
      channel_target_embs.append(target_embs)

    return tf.concat(channel_target_embs, axis=-1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:22,代码来源:modalities.py

示例13: get_channel_embeddings

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def get_channel_embeddings(io_depth, targets, hidden_size, name="channel"):
  """Get separate embedding for each of the channels."""
  targets_split = tf.split(targets, io_depth, axis=3)
  rgb_embedding_var = tf.get_variable("rgb_target_emb_%s" % name,
                                      [256 * io_depth, hidden_size])
  rgb_embedding_var = tf.identity(rgb_embedding_var)
  rgb_embedding_var *= float(hidden_size)**0.5
  channel_target_embs = []
  for i in range(io_depth):
    # Adding the channel offsets to get the right embedding since the
    # embedding tensor has shape 256 * io_depth, hidden_size
    target_ids = tf.squeeze(targets_split[i], axis=3) + i * 256
    target_embs = common_layers.gather(rgb_embedding_var, target_ids)
    channel_target_embs.append(target_embs)

  return tf.concat(channel_target_embs, axis=-1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:18,代码来源:common_image_attention.py

示例14: calculate_mmd

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def calculate_mmd(x, y, param, batch_size):
	xt = tf.transpose(x)
	yt = tf.transpose(y)
	x0 = tf.identity(x)
	y0 = tf.identity(y)
	x1 = tf.identity(xt)
	y1 = tf.identity(yt)
	for i in range(batch_size - 1):
		x0 = tf.concat([x0, x], axis=1)
		y0 = tf.concat([y0, y], axis=1)
		x1 = tf.concat([x1, xt], axis=0)
		y1 = tf.concat([y1, yt], axis=0)
	gaussian_mmd = calculate_gaussian_mmd(x0, y0, x1, y1, param, batch_size)
	logistic_mmd = calculate_logistic_mmd(x0, y0, x1, y1, param, batch_size)
	mmd = param['logistic'] * logistic_mmd + param['gaussian'] * gaussian_mmd
	return mmd 
开发者ID:Jeff-HOU,项目名称:UROP-Adversarial-Feature-Matching-for-Text-Generation,代码行数:18,代码来源:utils.py

示例15: build_forward

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import identity [as 别名]
def build_forward(self):
        verbalise = self.FLAGS.verbalise

        # Placeholders
        inp_size = [None] + self.meta['inp_size']
        self.inp = tf.placeholder(tf.float32, inp_size, 'input')
        self.feed = dict()  # other placeholders

        # Build the forward pass
        state = identity(self.inp)
        roof = self.num_layer - self.ntrain
        self.say(HEADER, LINE)
        for i, layer in enumerate(self.darknet.layers):
            scope = '{}-{}'.format(str(i), layer.type)
            args = [layer, state, i, roof, self.feed]
            state = op_create(*args)
            mess = state.verbalise()
            self.say(mess)
        self.say(LINE)

        self.top = state
        self.out = tf.identity(state.out, name='output') 
开发者ID:MahmudulAlam,项目名称:Automatic-Identification-and-Counting-of-Blood-Cells,代码行数:24,代码来源:build.py


注:本文中的tensorflow.identity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。