本文整理汇总了Python中seq2seq_model.Seq2SeqModel方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq_model.Seq2SeqModel方法的具体用法?Python seq2seq_model.Seq2SeqModel怎么用?Python seq2seq_model.Seq2SeqModel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类seq2seq_model
的用法示例。
在下文中一共展示了seq2seq_model.Seq2SeqModel方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_model
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def create_model(session, forward_only):
"""Create translation model and initialize or load parameters in session."""
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
model = seq2seq_model.Seq2SeqModel(
FLAGS.from_vocab_size,
FLAGS.to_vocab_size,
_buckets,
FLAGS.size,
FLAGS.num_layers,
FLAGS.max_gradient_norm,
FLAGS.batch_size,
FLAGS.learning_rate,
FLAGS.learning_rate_decay_factor,
forward_only=forward_only,
dtype=dtype)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.global_variables_initializer())
return model
示例2: self_test
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def self_test():
"""Test the translation model."""
with tf.Session() as sess:
print("Self-test for neural translation model.")
# Create model with vocabularies of 10, 2 small buckets, 2 layers of 32.
model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2,
5.0, 32, 0.3, 0.99, num_samples=8)
sess.run(tf.global_variables_initializer())
# Fake data set for both the (3, 3) and (6, 6) bucket.
data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])],
[([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])])
for _ in xrange(5): # Train the fake model for 5 steps.
bucket_id = random.choice([0, 1])
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
data_set, bucket_id)
model.step(sess, encoder_inputs, decoder_inputs, target_weights,
bucket_id, False)
示例3: create_model
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def create_model(session, forward_only):
"""Create model and initialize or load parameters"""
model = seq2seq_model.Seq2SeqModel( gConfig['enc_vocab_size'], gConfig['dec_vocab_size'], _buckets, gConfig['hidden_units'], gConfig['num_layers'], gConfig['max_gradient_norm'], gConfig['batch_size'], gConfig['learning_rate'], gConfig['learning_rate_decay_factor'], forward_only=forward_only)
if 'pretrained_model' in gConfig:
model.saver.restore(session,gConfig['pretrained_model'])
return model
ckpt = tf.train.get_checkpoint_state(gConfig['working_directory'])
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
示例4: self_test
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def self_test():
"""Test the translation model."""
with tf.Session() as sess:
print("Self-test for neural transliteration model.")
# Create model with vocabularies of 10, 2 small buckets, 2 layers of 32.
model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2,
5.0, 32, 0.3, 0.99, num_samples=8)
sess.run(tf.initialize_all_variables())
# Fake data set for both the (3, 3) and (6, 6) bucket.
data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])],
[([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])])
for _ in xrange(5): # Train the fake model for 5 steps.
bucket_id = random.choice([0, 1])
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
data_set, bucket_id)
model.step(sess, encoder_inputs, decoder_inputs, target_weights,
bucket_id, False)
示例5: create_model
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def create_model(session, forward_only):
"""Create translation model and initialize or load parameters in session."""
dtype = tf.float32
model = seq2seq_model.Seq2SeqModel(
FLAGS.input_vocab_size,
FLAGS.output_vocab_size,
_buckets,
FLAGS.size,
FLAGS.num_layers,
FLAGS.max_gradient_norm,
FLAGS.batch_size,
FLAGS.learning_rate,
FLAGS.learning_rate_decay_factor,
forward_only=forward_only,
dtype=dtype)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.global_variables_initializer())
return model
示例6: create_model
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def create_model(session, forward_only):
"""Create transliteration model and initialize or load parameters in session."""
model = seq2seq_model.Seq2SeqModel(
FLAGS.en_vocab_size, FLAGS.hn_vocab_size, _buckets,
FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor,
forward_only=forward_only,use_lstm=False)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
示例7: __init__
# 需要导入模块: import seq2seq_model [as 别名]
# 或者: from seq2seq_model import Seq2SeqModel [as 别名]
def __init__(self, vocab):
# self.model = Seq2SeqModel(vocab, training_mode=False)
self.model = RLModel(vocab, training_mode=False)
with self.model.graph.as_default():
self.model.ping = tf.constant("ack")
# self.model = MaluubaModel(vocab, training_mode=False)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_limit,allow_growth = True,visible_device_list='0')
self.sess = tf.Session(graph=self.model.graph, config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True))