当前位置: 首页>>代码示例>>Python>>正文


Python signal.html方法代码示例

本文整理汇总了Python中scipy.signal.html方法的典型用法代码示例。如果您正苦于以下问题:Python signal.html方法的具体用法?Python signal.html怎么用?Python signal.html使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.signal的用法示例。


在下文中一共展示了signal.html方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, discount):
    """Discounted cumulative sum.

    See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering  # noqa: E501
    Here, we have y[t] - discount*y[t+1] = x[t]
    or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]

    Args:
        x (np.ndarrary): Input.
        discount (float): Discount factor.

    Returns:
        np.ndarrary: Discounted cumulative sum.

    """
    return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1],
                                axis=0)[::-1] 
开发者ID:rlworkgroup,项目名称:garage,代码行数:19,代码来源:tensor_utils.py

示例2: batch_discounted_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def batch_discounted_cumsum(values, discount):
    """
    Return a matrix of discounted returns.

    output[i, j] = discounted sum of returns of rewards[i, j:]

    So

    output[i, j] = rewards[i, j] + rewards[i, j+1] * discount
                    + rewards[i, j+2] * discount**2 + ...

    Based on rllab.misc.special.discounted_cumsum
    :param rewards: FloatTensor, size [batch_size, sequence_length, 1]
    :param discount: float, discount factor
    :return FloatTensor, size [batch_size, sequence_length, 1]
    """
    # See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering
    # Here, we have y[t] - discount*y[t+1] = x[t]
    # or reverse(y)[t] - discount*reverse(y)[t-1] = reverse(x)[t]
    return scipy.signal.lfilter(
        [1], [1, float(-discount)], values.T[::-1], axis=0,
    )[::-1].T 
开发者ID:snasiriany,项目名称:leap,代码行数:24,代码来源:np_util.py

示例3: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, discount):
    # See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering
    # Here, we have y[t] - discount*y[t+1] = x[t]
    # or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]
    return scipy.signal.lfilter([1], [1, -discount], x[::-1], axis=0)[::-1] 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:7,代码来源:utils.py

示例4: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, discount):
    # See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering  # noqa: E501
    # Here, we have y[t] - discount*y[t+1] = x[t]
    # or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]
    return scipy.signal.lfilter(
        [1], [1, float(-discount)], x[::-1], axis=0)[::-1] 
开发者ID:rlworkgroup,项目名称:gym-sawyer,代码行数:8,代码来源:special.py

示例5: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, gamma):
    """Compute the discounted cumulative summation of an 1-d array.
    From https://github.com/rll/rllab/blob/master/rllab/misc/special.py"""
    # See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering
    # Here, we have y[t] - discount*y[t+1] = x[t]
    # or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]
    return scipy.signal.lfilter([1], [1, float(-gamma)], x[::-1], axis=0)[::-1] 
开发者ID:vacancy,项目名称:Jacinle,代码行数:9,代码来源:math.py

示例6: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, discount):
    """
    See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering

    Returns:
        (float) : y[t] - discount*y[t+1] = x[t] or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]
    """
    return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] 
开发者ID:jonasrothfuss,项目名称:ProMP,代码行数:10,代码来源:utils.py

示例7: discount_cumsum

# 需要导入模块: from scipy import signal [as 别名]
# 或者: from scipy.signal import html [as 别名]
def discount_cumsum(x, discount):
    # See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering
    # Here, we have y[t] - discount*y[t+1] = x[t]
    # or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]
    return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] 
开发者ID:PacktPublishing,项目名称:Python-Reinforcement-Learning-Projects,代码行数:7,代码来源:utils.py


注:本文中的scipy.signal.html方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。