本文整理汇总了Python中pandas._libs.tslib.array_to_datetime方法的典型用法代码示例。如果您正苦于以下问题:Python tslib.array_to_datetime方法的具体用法?Python tslib.array_to_datetime怎么用?Python tslib.array_to_datetime使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas._libs.tslib
的用法示例。
在下文中一共展示了tslib.array_to_datetime方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_coerce_of_invalid_datetimes
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_coerce_of_invalid_datetimes(errors):
arr = np.array(["01-01-2013", "not_a_date", "1"], dtype=object)
kwargs = dict(values=arr, errors=errors)
if errors == "ignore":
# Without coercing, the presence of any invalid
# dates prevents any values from being converted.
result, _ = tslib.array_to_datetime(**kwargs)
tm.assert_numpy_array_equal(result, arr)
else: # coerce.
# With coercing, the invalid dates becomes iNaT
result, _ = tslib.array_to_datetime(arr, errors="coerce")
expected = ["2013-01-01T00:00:00.000000000-0000",
iNaT,
iNaT]
tm.assert_numpy_array_equal(
result,
np_array_datetime64_compat(expected, dtype="M8[ns]"))
示例2: test_parsing_valid_dates
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_valid_dates(self):
arr = np.array(['01-01-2013', '01-02-2013'], dtype=object)
result = tslib.array_to_datetime(arr)
expected = ['2013-01-01T00:00:00.000000000-0000',
'2013-01-02T00:00:00.000000000-0000']
tm.assert_numpy_array_equal(
result,
np_array_datetime64_compat(expected, dtype='M8[ns]'))
arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object)
result = tslib.array_to_datetime(arr)
expected = ['2013-09-16T00:00:00.000000000-0000',
'2013-09-17T00:00:00.000000000-0000']
tm.assert_numpy_array_equal(
result,
np_array_datetime64_compat(expected, dtype='M8[ns]'))
示例3: test_coerce_of_invalid_datetimes
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_coerce_of_invalid_datetimes(self):
arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object)
# Without coercing, the presence of any invalid dates prevents
# any values from being converted
result = tslib.array_to_datetime(arr, errors='ignore')
tm.assert_numpy_array_equal(result, arr)
# With coercing, the invalid dates becomes iNaT
result = tslib.array_to_datetime(arr, errors='coerce')
expected = ['2013-01-01T00:00:00.000000000-0000',
tslib.iNaT,
tslib.iNaT]
tm.assert_numpy_array_equal(
result,
np_array_datetime64_compat(expected, dtype='M8[ns]'))
示例4: test_parsing_valid_dates
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_valid_dates(self):
arr = np.array(['01-01-2013', '01-02-2013'], dtype=object)
tm.assert_numpy_array_equal(
tslib.array_to_datetime(arr),
np_array_datetime64_compat(
[
'2013-01-01T00:00:00.000000000-0000',
'2013-01-02T00:00:00.000000000-0000'
],
dtype='M8[ns]'
)
)
arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object)
tm.assert_numpy_array_equal(
tslib.array_to_datetime(arr),
np_array_datetime64_compat(
[
'2013-09-16T00:00:00.000000000-0000',
'2013-09-17T00:00:00.000000000-0000'
],
dtype='M8[ns]'
)
)
示例5: test_parsing_timezone_offsets
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_timezone_offsets(self):
# All of these datetime strings with offsets are equivalent
# to the same datetime after the timezone offset is added
dt_strings = [
'01-01-2013 08:00:00+08:00',
'2013-01-01T08:00:00.000000000+0800',
'2012-12-31T16:00:00.000000000-0800',
'12-31-2012 23:00:00-01:00'
]
expected_output = tslib.array_to_datetime(np.array(
['01-01-2013 00:00:00'], dtype=object))
for dt_string in dt_strings:
tm.assert_numpy_array_equal(
tslib.array_to_datetime(
np.array([dt_string], dtype=object)
),
expected_output
)
示例6: test_parsing_valid_dates
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_valid_dates(data, expected):
arr = np.array(data, dtype=object)
result, _ = tslib.array_to_datetime(arr)
expected = np_array_datetime64_compat(expected, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
示例7: test_parsing_timezone_offsets
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_timezone_offsets(dt_string, expected_tz):
# All of these datetime strings with offsets are equivalent
# to the same datetime after the timezone offset is added.
arr = np.array(["01-01-2013 00:00:00"], dtype=object)
expected, _ = tslib.array_to_datetime(arr)
arr = np.array([dt_string], dtype=object)
result, result_tz = tslib.array_to_datetime(arr)
tm.assert_numpy_array_equal(result, expected)
assert result_tz is pytz.FixedOffset(expected_tz)
示例8: test_parsing_non_iso_timezone_offset
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_non_iso_timezone_offset():
dt_string = "01-01-2013T00:00:00.000000000+0000"
arr = np.array([dt_string], dtype=object)
result, result_tz = tslib.array_to_datetime(arr)
expected = np.array([np.datetime64("2013-01-01 00:00:00.000000000")])
tm.assert_numpy_array_equal(result, expected)
assert result_tz is pytz.FixedOffset(0)
示例9: test_parsing_different_timezone_offsets
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_different_timezone_offsets():
# see gh-17697
data = ["2015-11-18 15:30:00+05:30", "2015-11-18 15:30:00+06:30"]
data = np.array(data, dtype=object)
result, result_tz = tslib.array_to_datetime(data)
expected = np.array([datetime(2015, 11, 18, 15, 30,
tzinfo=tzoffset(None, 19800)),
datetime(2015, 11, 18, 15, 30,
tzinfo=tzoffset(None, 23400))],
dtype=object)
tm.assert_numpy_array_equal(result, expected)
assert result_tz is None
示例10: test_coerce_outside_ns_bounds
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_coerce_outside_ns_bounds(invalid_date, errors):
arr = np.array([invalid_date], dtype="object")
kwargs = dict(values=arr, errors=errors)
if errors == "raise":
msg = "Out of bounds nanosecond timestamp"
with pytest.raises(ValueError, match=msg):
tslib.array_to_datetime(**kwargs)
else: # coerce.
result, _ = tslib.array_to_datetime(**kwargs)
expected = np.array([iNaT], dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
示例11: test_coerce_outside_ns_bounds_one_valid
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_coerce_outside_ns_bounds_one_valid():
arr = np.array(["1/1/1000", "1/1/2000"], dtype=object)
result, _ = tslib.array_to_datetime(arr, errors="coerce")
expected = [iNaT, "2000-01-01T00:00:00.000000000-0000"]
expected = np_array_datetime64_compat(expected, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
示例12: test_to_datetime_barely_out_of_bounds
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_to_datetime_barely_out_of_bounds():
# see gh-19382, gh-19529
#
# Close enough to bounds that dropping nanos
# would result in an in-bounds datetime.
arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object)
msg = "Out of bounds nanosecond timestamp: 2262-04-11 23:47:16"
with pytest.raises(tslib.OutOfBoundsDatetime, match=msg):
tslib.array_to_datetime(arr)
示例13: test_parsing_timezone_offsets
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_parsing_timezone_offsets(self, dt_string):
# All of these datetime strings with offsets are equivalent
# to the same datetime after the timezone offset is added
arr = np.array(['01-01-2013 00:00:00'], dtype=object)
expected = tslib.array_to_datetime(arr)
arr = np.array([dt_string], dtype=object)
result = tslib.array_to_datetime(arr)
tm.assert_numpy_array_equal(result, expected)
示例14: test_number_looking_strings_not_into_datetime
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_number_looking_strings_not_into_datetime(self):
# GH#4601
# These strings don't look like datetimes so they shouldn't be
# attempted to be converted
arr = np.array(['-352.737091', '183.575577'], dtype=object)
result = tslib.array_to_datetime(arr, errors='ignore')
tm.assert_numpy_array_equal(result, arr)
arr = np.array(['1', '2', '3', '4', '5'], dtype=object)
result = tslib.array_to_datetime(arr, errors='ignore')
tm.assert_numpy_array_equal(result, arr)
示例15: test_coerce_outside_ns_bounds
# 需要导入模块: from pandas._libs import tslib [as 别名]
# 或者: from pandas._libs.tslib import array_to_datetime [as 别名]
def test_coerce_outside_ns_bounds(self, invalid_date):
arr = np.array([invalid_date], dtype='object')
with pytest.raises(ValueError):
tslib.array_to_datetime(arr, errors='raise')
result = tslib.array_to_datetime(arr, errors='coerce')
expected = np.array([tslib.iNaT], dtype='M8[ns]')
tm.assert_numpy_array_equal(result, expected)