本文整理汇总了Python中numpy.ma.masked_invalid方法的典型用法代码示例。如果您正苦于以下问题:Python ma.masked_invalid方法的具体用法?Python ma.masked_invalid怎么用?Python ma.masked_invalid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.ma
的用法示例。
在下文中一共展示了ma.masked_invalid方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _contour_args
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def _contour_args(self, args, kwargs):
if self.filled:
fn = 'contourf'
else:
fn = 'contour'
Nargs = len(args)
if Nargs <= 2:
z = ma.asarray(args[0], dtype=np.float64)
x, y = self._initialize_x_y(z)
args = args[1:]
elif Nargs <= 4:
x, y, z = self._check_xyz(args[:3], kwargs)
args = args[3:]
else:
raise TypeError("Too many arguments to %s; see help(%s)" %
(fn, fn))
z = ma.masked_invalid(z, copy=False)
self.zmax = ma.maximum(z)
self.zmin = ma.minimum(z)
if self.logscale and self.zmin <= 0:
z = ma.masked_where(z <= 0, z)
warnings.warn('Log scale: values of z <= 0 have been masked')
self.zmin = z.min()
self._contour_level_args(z, args)
return (x, y, z)
示例2: set_UVC
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def set_UVC(self, U, V, C=None):
U = ma.masked_invalid(U, copy=False).ravel()
V = ma.masked_invalid(V, copy=False).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=False).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
示例3: _contour_args
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def _contour_args(self, args, kwargs):
if self.filled:
fn = 'contourf'
else:
fn = 'contour'
Nargs = len(args)
if Nargs <= 2:
z = ma.asarray(args[0], dtype=np.float64)
x, y = self._initialize_x_y(z)
args = args[1:]
elif Nargs <= 4:
x, y, z = self._check_xyz(args[:3], kwargs)
args = args[3:]
else:
raise TypeError("Too many arguments to %s; see help(%s)" %
(fn, fn))
z = ma.masked_invalid(z, copy=False)
self.zmax = float(z.max())
self.zmin = float(z.min())
if self.logscale and self.zmin <= 0:
z = ma.masked_where(z <= 0, z)
warnings.warn('Log scale: values of z <= 0 have been masked')
self.zmin = float(z.min())
self._contour_level_args(z, args)
return (x, y, z)
示例4: set_UVC
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def set_UVC(self, U, V, C=None):
# We need to ensure we have a copy, not a reference
# to an array that might change before draw().
U = ma.masked_invalid(U, copy=True).ravel()
V = ma.masked_invalid(V, copy=True).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=True).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
self.stale = True
示例5: set_values1d
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def set_values1d(self, val, order="C"):
"""Update the values attribute based on a 1D input, multiple options.
If values are np.nan or values are > UNDEF_LIMIT, they will be
masked.
Args:
order (str): Input is C (default) or F order
"""
if order == "F":
val = np.copy(val, order="C")
val = val.reshape((self.ncol, self.nrow))
if not isinstance(val, ma.MaskedArray):
val = ma.array(val)
val = ma.masked_greater(val, self.undef_limit)
val = ma.masked_invalid(val)
self.values = val
示例6: smooth_median
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def smooth_median(self, iterations=1, width=1):
"""Smooth a surface using a median filter.
.. versionadded:: 2.1.0
"""
mask = ma.getmaskarray(self.values)
tmpv = ma.filled(self.values, fill_value=np.nan)
for _itr in range(iterations):
tmpv = scipy.ndimage.median_filter(tmpv, width)
tmpv = ma.masked_invalid(tmpv)
# seems that false areas of invalids (masked) may be made; combat that:
self.values = tmpv
self.fill()
self.values = ma.array(self.values, mask=mask)
示例7: fit
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def fit(self, X: Union[pd.DataFrame, np.ndarray], y=None):
# Store the min/max for features in training.
if self.strategy == "minmax":
data = pd.DataFrame(X) # ensure a dataframe
# Calculate max/min allowable values
max_allowable_value = np.finfo(data.values.dtype).max
min_allowable_value = np.finfo(data.values.dtype).min
# Get the max/min values in each feature, ignoring infs
_posinf_fill_values = data.apply(lambda col: masked_invalid(col).max())
_neginf_fill_values = data.apply(lambda col: masked_invalid(col).min())
# Calculate a 1d arrays of fill values for each feature
self._posinf_fill_values = _posinf_fill_values.apply(
lambda val: val + self.delta
if max_allowable_value - self.delta > val
else max_allowable_value
)
self._neginf_fill_values = _neginf_fill_values.apply(
lambda val: val - self.delta
if min_allowable_value + self.delta < val
else min_allowable_value
)
return self
示例8: infmean
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def infmean(arr, axis):
""" Compute the arithmetic mean along given axis ignoring infs,
when there is at least one finite number along averaging axis.
"""
masked = ma.masked_invalid(arr)
masked = masked.mean(axis=axis)
if np.isscalar(masked):
return masked
if isinstance(masked, ma.core.MaskedConstant):
return np.inf
masked[masked.mask] = np.inf
return masked.data
示例9: variation
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def variation(a, axis=0, nan_policy='propagate'):
"""
Computes the coefficient of variation, the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default
is 0. If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
variation : ndarray
The calculated variation along the requested axis.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.variation(a, axis)
return a.std(axis) / a.mean(axis)
示例10: _contour_args
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def _contour_args(self, args, kwargs):
if self.filled:
fn = 'contourf'
else:
fn = 'contour'
Nargs = len(args)
if Nargs <= 2:
z = ma.asarray(args[0], dtype=np.float64)
x, y = self._initialize_x_y(z)
args = args[1:]
elif Nargs <= 4:
x, y, z = self._check_xyz(args[:3], kwargs)
args = args[3:]
else:
raise TypeError("Too many arguments to %s; see help(%s)" %
(fn, fn))
z = ma.masked_invalid(z, copy=False)
self.zmax = float(z.max())
self.zmin = float(z.min())
if self.logscale and self.zmin <= 0:
z = ma.masked_where(z <= 0, z)
cbook._warn_external('Log scale: values of z <= 0 have been '
'masked')
self.zmin = float(z.min())
self._contour_level_args(z, args)
return (x, y, z)
示例11: get_xy_values
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def get_xy_values(self, order="C", asmasked=False):
"""Get X Y coordinate values as numpy 2D arrays."""
nno = self.ncol * self.nrow
ier, xvals, yvals = _cxtgeo.surf_xy_as_values(
self.xori,
self.xinc,
self.yori,
self.yinc * self.yflip,
self.ncol,
self.nrow,
self.rotation,
nno,
nno,
0,
)
if ier != 0:
logger.critical("Error code %s, contact the author", ier)
# reshape
xvals = xvals.reshape((self.ncol, self.nrow))
yvals = yvals.reshape((self.ncol, self.nrow))
if order == "F":
xvals = np.array(xvals, order="F")
yvals = np.array(yvals, order="F")
if asmasked:
tmpv = ma.filled(self.values, fill_value=np.nan)
tmpv = np.array(tmpv, order=order)
tmpv = ma.masked_invalid(tmpv)
mymask = ma.getmaskarray(tmpv)
xvals = ma.array(xvals, mask=mymask, order=order)
yvals = ma.array(yvals, mask=mymask, order=order)
return xvals, yvals
示例12: get_values1d
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import masked_invalid [as 别名]
def get_values1d(
self, order="C", asmasked=False, fill_value=xtgeo.UNDEF, activeonly=False
):
"""Get an an 1D, numpy or masked array of the map values.
Args:
order (str): Flatteting is in C (default) or F order
asmasked (bool): If true, return as MaskedArray, other as standard
numpy ndarray with undef as np.nan or fill_value
fill_value (str): Relevent only if asmasked is False, this
will be the value of undef entries
activeonly (bool): If True, only active cells. Keys 'asmasked' and
'fill_value' are not revelant.
Returns:
A numpy 1D array or MaskedArray
"""
val = self.values.copy()
if order == "F":
val = ma.filled(val, fill_value=np.nan)
val = np.array(val, order="F")
val = ma.masked_invalid(val)
val = val.ravel(order="K")
if activeonly:
val = val[~val.mask]
if not asmasked and not activeonly:
val = ma.filled(val, fill_value=fill_value)
return val