本文整理汇总了Python中matplotlib.cm.plasma方法的典型用法代码示例。如果您正苦于以下问题:Python cm.plasma方法的具体用法?Python cm.plasma怎么用?Python cm.plasma使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.cm
的用法示例。
在下文中一共展示了cm.plasma方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_molecular_error_distribution_plots
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def create_molecular_error_distribution_plots(collection_df, directory_path, file_base_name, subset_of_method_ids):
# Ridge plot using all predictions
ridge_plot(df=collection_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_all_methods.pdf")
# Ridge plot using only consistently well-performing methods
collection_subset_df = collection_df[collection_df["receipt_id"].isin(subset_of_method_ids)].reset_index(drop=True)
ridge_plot(df=collection_subset_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_well_performing_methods.pdf")
示例2: create_category_error_distribution_plots
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def create_category_error_distribution_plots(collection_df, directory_path, file_base_name):
# Ridge plot using all predictions
ridge_plot_wo_overlap(df=collection_df, by = "reassigned category", column = "$\Delta$logP error (calc - exp)", figsize=(4, 4),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +".pdf")
示例3: create_molecular_error_distribution_plots
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def create_molecular_error_distribution_plots(collection_df, directory_path, file_base_name):
# Ridge plot using all predictions
ridge_plot(df=collection_df, by = "Molecule ID", column = "$\Delta$logP error (calc - exp)", figsize=(4, 6),
colormap=cm.plasma)
plt.savefig(directory_path + "/" + file_base_name +"_all_methods.pdf")
# =============================================================================
# MAIN
# =============================================================================
示例4: visflow
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def visflow(flow_img):
# H x W x 2
flow_img = convert2np(flow_img)
from matplotlib import cm
x_img = flow_img[:, :, 0]
def color_within_01(vals):
# vals is Nx1 in [-1, 1] (but could be larger)
vals = np.clip(vals, -1, 1)
# make [0, 1]
vals = (vals + 1) / 2.
# Append dummy end vals for consistent coloring
weights = np.hstack([vals, np.array([0, 1])])
# Drop the dummy colors
colors = cm.plasma(weights)[:-2, :3]
return colors
# x_color = cm.plasma(x_img.reshape(-1))[:, :3]
x_color = color_within_01(x_img.reshape(-1))
x_color = x_color.reshape([x_img.shape[0], x_img.shape[1], 3])
y_img = flow_img[:, :, 1]
# y_color = cm.plasma(y_img.reshape(-1))[:, :3]
y_color = color_within_01(y_img.reshape(-1))
y_color = y_color.reshape([y_img.shape[0], y_img.shape[1], 3])
vis = np.vstack([x_color, y_color])
# import matplotlib.pyplot as plt
# plt.ion()
# plt.imshow(x_color)
return vis
示例5: process_results
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def process_results(self):
""" Sync the results up accoding to the sim time and determine
which rates are stable and instable in the sim
Returns Array or RPYs, Max rate that is stable, color for each RPY point, """
threshold = 0.001 #1mm
instable = []
stable = []
d_range = self.max_d_sum - self.min_d_sum
print ("Min=", self.min_d_sum)
print ("Max=", self.max_d_sum)
print ("D range=", d_range)
norm = matplotlib.colors.Normalize(vmin=self.min_d_sum, vmax=self.max_d_sum, clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.plasma)
#print (self.data_pose)
max_r = 0
colors = []
rates = []
ds = [] #array of distance sums
for i in range(len(self.data_pose)):
ac_trial = np.array(self.data_ac[i])
for pose in self.data_pose[i]:
t = pose[0]
d_sum = pose[1]
found_row = ac_trial[np.where(ac_trial[:,0] == t)]
if len(found_row) > 0:
rate = found_row[0][1:]
#print ("t=", t, " d_sum", d_sum)
#print (found_row)
colors.append(mapper.to_rgba(d_sum))
rates.append(rate)
ds.append(d_sum)
if d_sum >= threshold:
instable.append(rate)
if (rate < self.min_rate).all():
self.min_rate = rate.copy()
else:
stable.append(rate)
r = np.linalg.norm(rate)
if r > max_r:
max_r = r
#print ("t=", t, " rpy=", rate)
#return np.array(instable), np.array(stable), max_r, colors
print ("Instability occurs at ", self.min_rate)
np.savetxt("/tmp/unstable.txt", instable )
return np.array(rates), max_r, colors, ds
示例6: plot
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import plasma [as 别名]
def plot(self):
#instable, stable, r, colors = self.process_results()
rates, r, colors, ds = self.process_results()
#print ("Instable", instable)
#print ("Stable", stable)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#stable = ax.scatter(data[:,0], data[:,1], data[:,2], c=colors, label=labels)
"""
if len(stable)>0:
ax_stable = ax.scatter(stable[:,0], stable[:,1], stable[:,2], c='b')
if len(instable)>0:
ax_instable = ax.scatter(instable[:,0], instable[:,1], instable[:,2], c='r')
"""
ax_instable = ax.scatter(rates[:,0], rates[:,1], rates[:,2], c=ds, cmap='plasma')
steps = 20
theta, phi = np.linspace(0, 2 * np.pi, steps), np.linspace(0, np.pi, steps)
THETA, PHI = np.meshgrid(theta, phi)
x = r * np.sin(PHI) * np.cos(THETA)
y = r * np.sin(PHI) * np.sin(THETA)
z = r * np.cos(PHI)
#ax.plot_wireframe(x, y, z, color="b")
ax.set_xlabel('Roll (deg/s)')
ax.set_ylabel('Pitch (deg/s)')
ax.set_zlabel('Yaw (deg/s)')
"""
if len(instable)>0:
print ("HERE")
ax.legend((ax_stable, ax_instable), ("Stable Region", "Instable"))
else:
print ("HERE2")
ax.legend((ax_stable,), ("Stable Region",))
"""
title_mapping = {
"dart" : "DART",
"ode" : "ODE",
"bullet" : "Bullet",
"simbody" : "Simbody"
}
#plt.title("{} Physics Engine - Step size {}".format(title_mapping[self.physics_type], self.step_size))
#_data = plt.cm.jet()
cb = plt.colorbar(ax_instable, ax=ax)
cb.set_label(label='Model Drift (meters)', weight='bold')
plt.show()