当前位置: 首页>>代码示例>>Python>>正文


Python keypoint.PersonKeypoints方法代码示例

本文整理汇总了Python中maskrcnn_benchmark.structures.keypoint.PersonKeypoints方法的典型用法代码示例。如果您正苦于以下问题:Python keypoint.PersonKeypoints方法的具体用法?Python keypoint.PersonKeypoints怎么用?Python keypoint.PersonKeypoints使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在maskrcnn_benchmark.structures.keypoint的用法示例。


在下文中一共展示了keypoint.PersonKeypoints方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        masks = [obj["segmentation"] for obj in anno]
        masks = SegmentationMask(masks, img.size)
        target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, idx 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:33,代码来源:coco.py

示例2: forward

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def forward(self, x, boxes):
        mask_prob = x

        scores = None
        if self.keypointer:
            mask_prob, scores = self.keypointer(x, boxes)

        assert len(boxes) == 1, "Only non-batched inference supported for now"
        boxes_per_image = [box.bbox.size(0) for box in boxes]
        mask_prob = mask_prob.split(boxes_per_image, dim=0)
        scores = scores.split(boxes_per_image, dim=0)

        results = []
        for prob, box, score in zip(mask_prob, boxes, scores):
            bbox = BoxList(box.bbox, box.size, mode="xyxy")
            for field in box.fields():
                bbox.add_field(field, box.get_field(field))
            prob = PersonKeypoints(prob, box.size)
            prob.add_field("logits", score)
            bbox.add_field("keypoints", prob)
            results.append(bbox)

        return results


# TODO remove and use only the Keypointer 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:28,代码来源:inference.py

示例3: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(ModaNetDataset, self).__getitem__(idx)
        
        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"]+1 for obj in anno]
        #print(classes,'old')
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        #print(classes,classes2)
        classes = torch.tensor(classes)
        target.add_field("labels", classes) #

        #masks = [obj["segmentation"] for obj in anno]
        #masks = SegmentationMask(masks, img.size, mode='poly')
        #target.add_field("masks", masks)

        #if anno and "keypoints" in anno[0]:
         #   keypoints = [obj["keypoints"] for obj in anno]
          #  keypoints = PersonKeypoints(keypoints, img.size)
           # target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, idx 
开发者ID:simaiden,项目名称:Clothing-Detection,代码行数:35,代码来源:modanet.py

示例4: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        if anno and "segmentation" in anno[0]:
            masks = [obj["segmentation"] for obj in anno]
            masks = SegmentationMask(masks, img.size, mode='poly')
            target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        return img, target, idx 
开发者ID:simaiden,项目名称:Clothing-Detection,代码行数:34,代码来源:coco.py

示例5: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(DeepFashion2Dataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        #print(classes)
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        #masks = [obj["segmentation"] for obj in anno]
        #masks = SegmentationMask(masks, img.size, mode='poly')
        #target.add_field("masks", masks)

        #if anno and "keypoints" in anno[0]:
         #   keypoints = [obj["keypoints"] for obj in anno]
          #  keypoints = PersonKeypoints(keypoints, img.size)
           # target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, idx 
开发者ID:simaiden,项目名称:Clothing-Detection,代码行数:34,代码来源:deepfashion2.py

示例6: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        # masks = [obj["segmentation"] for obj in anno]
        # masks = SegmentationMask(masks, img.size, mode='poly')
        # target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, idx 
开发者ID:HuangQinJian,项目名称:DF-Traffic-Sign-Identification,代码行数:33,代码来源:coco.py

示例7: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)
        # ########################## add by hui ########################################
        img_info = self.get_img_info(idx)
        if 'corner' in img_info:
            img = img.crop(img_info['corner'])
        ################################################################################

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]
        # ######################### add by hui ####################################
        if self.filter_ignore and anno and "ignore" in anno[0]:  # filter ignore out
            anno = [obj for obj in anno if not obj["ignore"]]
        ###########################################################################

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        masks = [obj["segmentation"] for obj in anno]
        masks = SegmentationMask(masks, img.size)
        target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target, idx 
开发者ID:ucas-vg,项目名称:TinyBenchmark,代码行数:42,代码来源:coco.py

示例8: __getitem__

# 需要导入模块: from maskrcnn_benchmark.structures import keypoint [as 别名]
# 或者: from maskrcnn_benchmark.structures.keypoint import PersonKeypoints [as 别名]
def __getitem__(self, idx):
        #img, anno = super(COCODataset, self).__getitem__(idx)
        coco = self.coco
        img_id = self.ids[idx]
        ann_ids = coco.getAnnIds(imgIds=img_id)
        anno = coco.loadAnns(ann_ids)

        path = coco.loadImgs(img_id)[0]['file_name']

        if isinstance(self.root, list):
            root = [r for r in self.root if path.split('_')[1] in r][0]
        else:
            root = self.root
        img = Image.open(os.path.join(root, path)).convert('RGB')
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            anno = self.target_transform(anno)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        if anno and "segmentation" in anno[0]:
            masks = [obj["segmentation"] for obj in anno]
            masks = SegmentationMask(masks, img.size, mode='poly')
            target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        return img, target, idx 
开发者ID:megvii-model,项目名称:DetNAS,代码行数:51,代码来源:coco.py


注:本文中的maskrcnn_benchmark.structures.keypoint.PersonKeypoints方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。