本文整理汇总了Python中keras.activations.sigmoid方法的典型用法代码示例。如果您正苦于以下问题:Python activations.sigmoid方法的具体用法?Python activations.sigmoid怎么用?Python activations.sigmoid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.activations
的用法示例。
在下文中一共展示了activations.sigmoid方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _compute_probabilities
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def _compute_probabilities(self, energy, previous_attention=None):
if self.is_monotonic:
# add presigmoid noise to encourage discreteness
sigmoid_noise = K.in_train_phase(1., 0.)
noise = K.random_normal(K.shape(energy), mean=0.0, stddev=sigmoid_noise)
# encourage discreteness in train
energy = K.in_train_phase(energy + noise, energy)
p = K.in_train_phase(K.sigmoid(energy),
K.cast(energy > 0, energy.dtype))
p = K.squeeze(p, -1)
p_prev = K.squeeze(previous_attention, -1)
# monotonic attention function from tensorflow
at = K.in_train_phase(
tf.contrib.seq2seq.monotonic_attention(p, p_prev, 'parallel'),
tf.contrib.seq2seq.monotonic_attention(p, p_prev, 'hard'))
at = K.expand_dims(at, -1)
else:
# softmax
at = keras.activations.softmax(energy, axis=1)
return at
示例2: test_sigmoid
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def test_sigmoid():
"""Test using a numerically stable reference sigmoid implementation.
"""
def ref_sigmoid(x):
if x >= 0:
return 1 / (1 + np.exp(-x))
else:
z = np.exp(x)
return z / (1 + z)
sigmoid = np.vectorize(ref_sigmoid)
x = K.placeholder(ndim=2)
f = K.function([x], [activations.sigmoid(x)])
test_values = get_standard_values()
result = f([test_values])[0]
expected = sigmoid(test_values)
assert_allclose(result, expected, rtol=1e-05)
示例3: test_hard_sigmoid
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def test_hard_sigmoid():
"""Test using a reference hard sigmoid implementation.
"""
def ref_hard_sigmoid(x):
x = (x * 0.2) + 0.5
z = 0.0 if x <= 0 else (1.0 if x >= 1 else x)
return z
hard_sigmoid = np.vectorize(ref_hard_sigmoid)
x = K.placeholder(ndim=2)
f = K.function([x], [activations.hard_sigmoid(x)])
test_values = get_standard_values()
result = f([test_values])[0]
expected = hard_sigmoid(test_values)
assert_allclose(result, expected, rtol=1e-05)
示例4: breast_cancer
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def breast_cancer():
from keras.optimizers import Adam, Nadam, RMSprop
from keras.losses import logcosh, binary_crossentropy
from keras.activations import relu, elu, sigmoid
# then we can go ahead and set the parameter space
p = {'lr': (0.5, 5, 10),
'first_neuron': [4, 8, 16, 32, 64],
'hidden_layers': [0, 1, 2],
'batch_size': (2, 30, 10),
'epochs': [50, 100, 150],
'dropout': (0, 0.5, 5),
'shapes': ['brick', 'triangle', 'funnel'],
'optimizer': [Adam, Nadam, RMSprop],
'losses': [logcosh, binary_crossentropy],
'activation': [relu, elu],
'last_activation': [sigmoid]}
return p
示例5: se_block
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def se_block(input_feature, ratio=8):
"""Contains the implementation of Squeeze-and-Excitation(SE) block.
As described in https://arxiv.org/abs/1709.01507.
"""
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature._keras_shape[channel_axis]
se_feature = GlobalAveragePooling2D()(input_feature)
se_feature = Reshape((1, 1, channel))(se_feature)
assert se_feature._keras_shape[1:] == (1,1,channel)
se_feature = Dense(channel // ratio,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')(se_feature)
assert se_feature._keras_shape[1:] == (1,1,channel//ratio)
se_feature = Dense(channel,
activation='sigmoid',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')(se_feature)
assert se_feature._keras_shape[1:] == (1,1,channel)
if K.image_data_format() == 'channels_first':
se_feature = Permute((3, 1, 2))(se_feature)
se_feature = multiply([input_feature, se_feature])
return se_feature
示例6: channel_attention
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def channel_attention(input_feature, ratio=8):
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature._keras_shape[channel_axis]
shared_layer_one = Dense(channel//ratio,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
shared_layer_two = Dense(channel,
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = Reshape((1,1,channel))(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
avg_pool = shared_layer_one(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel//ratio)
avg_pool = shared_layer_two(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = Reshape((1,1,channel))(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
max_pool = shared_layer_one(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel//ratio)
max_pool = shared_layer_two(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
cbam_feature = Add()([avg_pool,max_pool])
cbam_feature = Activation('sigmoid')(cbam_feature)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
示例7: spatial_attention
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def spatial_attention(input_feature):
kernel_size = 7
if K.image_data_format() == "channels_first":
channel = input_feature._keras_shape[1]
cbam_feature = Permute((2,3,1))(input_feature)
else:
channel = input_feature._keras_shape[-1]
cbam_feature = input_feature
avg_pool = Lambda(lambda x: K.mean(x, axis=3, keepdims=True))(cbam_feature)
assert avg_pool._keras_shape[-1] == 1
max_pool = Lambda(lambda x: K.max(x, axis=3, keepdims=True))(cbam_feature)
assert max_pool._keras_shape[-1] == 1
concat = Concatenate(axis=3)([avg_pool, max_pool])
assert concat._keras_shape[-1] == 2
cbam_feature = Conv2D(filters = 1,
kernel_size=kernel_size,
strides=1,
padding='same',
activation='sigmoid',
kernel_initializer='he_normal',
use_bias=False)(concat)
assert cbam_feature._keras_shape[-1] == 1
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
示例8: __init__
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def __init__(self, units,
n_slots=50,
m_depth=20,
shift_range=3,
controller_model=None,
read_heads=1,
write_heads=1,
activation='sigmoid',
batch_size=777,
stateful=False,
**kwargs):
self.output_dim = units
self.units = units
self.n_slots = n_slots
self.m_depth = m_depth
self.shift_range = shift_range
self.controller = controller_model
self.activation = get_activations(activation)
self.read_heads = read_heads
self.write_heads = write_heads
self.batch_size = batch_size
# self.return_sequence = True
try:
if controller.state.stateful:
self.controller_with_state = True
except:
self.controller_with_state = False
self.controller_read_head_emitting_dim = _controller_read_head_emitting_dim(m_depth, shift_range)
self.controller_write_head_emitting_dim = _controller_write_head_emitting_dim(m_depth, shift_range)
super(NeuralTuringMachine, self).__init__(**kwargs)
示例9: get_model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def get_model():
nclass = 1
inp = Input(shape=(187, 1))
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp)
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = GlobalMaxPool1D()(img_1)
img_1 = Dropout(rate=0.2)(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1)
dense_1 = Dense(nclass, activation=activations.sigmoid, name="dense_3_ptbdb")(dense_1)
model = models.Model(inputs=inp, outputs=dense_1)
opt = optimizers.Adam(0.001)
model.compile(optimizer=opt, loss=losses.binary_crossentropy, metrics=['acc'])
model.summary()
return model
示例10: get_model
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def get_model():
nclass = 1
inp = Input(shape=(187, 1))
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid", trainable=False)(inp)
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
img_1 = GlobalMaxPool1D()(img_1)
img_1 = Dropout(rate=0.2)(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1)
dense_1 = Dense(nclass, activation=activations.sigmoid, name="dense_3_ptbdb")(dense_1)
model = models.Model(inputs=inp, outputs=dense_1)
opt = optimizers.Adam(0.001)
model.compile(optimizer=opt, loss=losses.binary_crossentropy, metrics=['acc'])
model.summary()
return model
示例11: test_serialization
# 需要导入模块: from keras import activations [as 别名]
# 或者: from keras.activations import sigmoid [as 别名]
def test_serialization():
all_activations = ['softmax', 'relu', 'elu', 'tanh',
'sigmoid', 'hard_sigmoid', 'linear',
'softplus', 'softsign', 'selu']
for name in all_activations:
fn = activations.get(name)
ref_fn = getattr(activations, name)
assert fn == ref_fn
config = activations.serialize(fn)
fn = activations.deserialize(config)
assert fn == ref_fn