当前位置: 首页>>代码示例>>Python>>正文


Python network_units.Layer方法代码示例

本文整理汇总了Python中dragnn.python.network_units.Layer方法的典型用法代码示例。如果您正苦于以下问题:Python network_units.Layer方法的具体用法?Python network_units.Layer怎么用?Python network_units.Layer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dragnn.python.network_units的用法示例。


在下文中一共展示了network_units.Layer方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_hidden_layers

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import Layer [as 别名]
def create_hidden_layers(self, component, hidden_layer_sizes):
    """See base class."""
    # Construct the layer meta info for the DRAGNN builder. Note that the order
    # of h and c are reversed compared to the vanilla DRAGNN LSTM cell, as
    # this is the standard in tf.contrib.rnn.
    #
    # NB: The h activations of the last LSTM must be the last layer, in order
    # for _append_base_layers() to work.
    layers = []
    for index, num_units in enumerate(hidden_layer_sizes):
      layers.append(
          dragnn.Layer(component, name='state_c_%d' % index, dim=num_units))
      layers.append(
          dragnn.Layer(component, name='state_h_%d' % index, dim=num_units))
    context_layers = list(layers)  # copy |layers|, don't alias it
    return layers, context_layers 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:wrapped_units.py

示例2: __init__

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import Layer [as 别名]
def __init__(self, component):
    super(PairwiseBilinearLabelNetwork, self).__init__(component)
    parameters = component.spec.network_unit.parameters

    self._num_labels = int(parameters['num_labels'])

    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    self._weights = []
    self._weights.append(
        network_units.add_var_initialized('bilinear',
                                          [self._source_dim,
                                           self._num_labels,
                                           self._target_dim],
                                          'xavier'))

    self._params.extend(self._weights)
    self._regularized_weights.extend(self._weights)
    self._layers.append(network_units.Layer(component,
                                            name='bilinear_scores',
                                            dim=self._num_labels)) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:24,代码来源:transformer_units.py

示例3: __init__

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import Layer [as 别名]
def __init__(self, component):
    """Initializes weights and layers.

    Args:
      component: Parent ComponentBuilderBase object.
    """
    super(BiaffineDigraphNetwork, self).__init__(component)

    check.Eq(len(self._fixed_feature_dims.items()), 0,
             'Expected no fixed features')
    check.Eq(len(self._linked_feature_dims.items()), 2,
             'Expected two linked features')

    check.In('sources', self._linked_feature_dims,
             'Missing required linked feature')
    check.In('targets', self._linked_feature_dims,
             'Missing required linked feature')
    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    # TODO(googleuser): Make parameter initialization configurable.
    self._weights = []
    self._weights.append(tf.get_variable(
        'weights_arc', [self._source_dim, self._target_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))
    self._weights.append(tf.get_variable(
        'weights_source', [self._source_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))
    self._weights.append(tf.get_variable(
        'root', [self._source_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))

    self._params.extend(self._weights)
    self._regularized_weights.extend(self._weights)

    # Negative Layer.dim indicates that the dimension is dynamic.
    self._layers.append(network_units.Layer(self, 'adjacency', -1)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:39,代码来源:biaffine_units.py

示例4: __init__

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import Layer [as 别名]
def __init__(self, component):
    """Initializes weights and layers.

    Args:
      component: Parent ComponentBuilderBase object.
    """
    super(BiaffineDigraphNetwork, self).__init__(component)

    check.Eq(len(self._fixed_feature_dims.items()), 0,
             'Expected no fixed features')
    check.Eq(len(self._linked_feature_dims.items()), 2,
             'Expected two linked features')

    check.In('sources', self._linked_feature_dims,
             'Missing required linked feature')
    check.In('targets', self._linked_feature_dims,
             'Missing required linked feature')
    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    # TODO(googleuser): Make parameter initialization configurable.
    self._weights = []
    self._weights.append(tf.get_variable(
        'weights_arc', [self._source_dim, self._target_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))
    self._weights.append(tf.get_variable(
        'weights_source', [self._source_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))
    self._weights.append(tf.get_variable(
        'root', [self._source_dim], tf.float32,
        tf.random_normal_initializer(stddev=1e-4)))

    self._params.extend(self._weights)
    self._regularized_weights.extend(self._weights)

    # Negative Layer.dim indicates that the dimension is dynamic.
    self._layers.append(network_units.Layer(component, 'adjacency', -1)) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:39,代码来源:biaffine_units.py

示例5: __init__

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import Layer [as 别名]
def __init__(self, component):
    """Initializes weights and layers.

    Args:
      component: Parent ComponentBuilderBase object.
    """
    super(BiaffineDigraphNetwork, self).__init__(component)

    check.Eq(len(self._fixed_feature_dims.items()), 0,
             'Expected no fixed features')
    check.Eq(len(self._linked_feature_dims.items()), 2,
             'Expected two linked features')

    check.In('sources', self._linked_feature_dims,
             'Missing required linked feature')
    check.In('targets', self._linked_feature_dims,
             'Missing required linked feature')
    self._source_dim = self._linked_feature_dims['sources']
    self._target_dim = self._linked_feature_dims['targets']

    self._weights = []
    self._weights.append(
        tf.get_variable('weights_arc', [self._source_dim, self._target_dim],
                        tf.float32, tf.orthogonal_initializer()))
    self._weights.append(
        tf.get_variable('weights_source', [self._source_dim], tf.float32,
                        tf.zeros_initializer()))
    self._weights.append(
        tf.get_variable('root', [self._source_dim], tf.float32,
                        tf.zeros_initializer()))

    self._params.extend(self._weights)
    self._regularized_weights.extend(self._weights)

    # Add runtime hooks for pre-computed weights.
    self._derived_params.append(self._get_root_weights)
    self._derived_params.append(self._get_root_bias)

    # Negative Layer.dim indicates that the dimension is dynamic.
    self._layers.append(network_units.Layer(component, 'adjacency', -1)) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:42,代码来源:biaffine_units.py


注:本文中的dragnn.python.network_units.Layer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。