当前位置: 首页>>代码示例>>Python>>正文


Python detection.Detection方法代码示例

本文整理汇总了Python中deep_sort.detection.Detection方法的典型用法代码示例。如果您正苦于以下问题:Python detection.Detection方法的具体用法?Python detection.Detection怎么用?Python detection.Detection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在deep_sort.detection的用法示例。


在下文中一共展示了detection.Detection方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_detections

# 需要导入模块: from deep_sort import detection [as 别名]
# 或者: from deep_sort.detection import Detection [as 别名]
def create_detections(detection_mat, frame_idx, min_height=0):
    """Create detections for given frame index from the raw detection matrix.

    Parameters
    ----------
    detection_mat : ndarray
        Matrix of detections. The first 10 columns of the detection matrix are
        in the standard MOTChallenge detection format. In the remaining columns
        store the feature vector associated with each detection.
    frame_idx : int
        The frame index.
    min_height : Optional[int]
        A minimum detection bounding box height. Detections that are smaller
        than this value are disregarded.

    Returns
    -------
    List[tracker.Detection]
        Returns detection responses at given frame index.

    """
    frame_indices = detection_mat[:, 0].astype(np.int)
    mask = frame_indices == frame_idx

    detection_list = []
    for row in detection_mat[mask]:
        bbox, confidence, feature = row[2:6], row[6], row[10:]
        if bbox[3] < min_height:
            continue
        detection_list.append(Detection(bbox, confidence, feature))
    return detection_list 
开发者ID:nwojke,项目名称:deep_sort,代码行数:33,代码来源:deep_sort_app.py

示例2: parse_args

# 需要导入模块: from deep_sort import detection [as 别名]
# 或者: from deep_sort.detection import Detection [as 别名]
def parse_args():
    """ Parse command line arguments.
    """
    parser = argparse.ArgumentParser(description="Deep SORT")
    parser.add_argument(
        "--sequence_dir", help="Path to MOTChallenge sequence directory",
        default=None, required=True)
    parser.add_argument(
        "--detection_file", help="Path to custom detections.", default=None,
        required=True)
    parser.add_argument(
        "--output_file", help="Path to the tracking output file. This file will"
        " contain the tracking results on completion.",
        default="/tmp/hypotheses.txt")
    parser.add_argument(
        "--min_confidence", help="Detection confidence threshold. Disregard "
        "all detections that have a confidence lower than this value.",
        default=0.8, type=float)
    parser.add_argument(
        "--min_detection_height", help="Threshold on the detection bounding "
        "box height. Detections with height smaller than this value are "
        "disregarded", default=0, type=int)
    parser.add_argument(
        "--nms_max_overlap",  help="Non-maxima suppression threshold: Maximum "
        "detection overlap.", default=1.0, type=float)
    parser.add_argument(
        "--max_cosine_distance", help="Gating threshold for cosine distance "
        "metric (object appearance).", type=float, default=0.2)
    parser.add_argument(
        "--nn_budget", help="Maximum size of the appearance descriptors "
        "gallery. If None, no budget is enforced.", type=int, default=None)
    parser.add_argument(
        "--display", help="Show intermediate tracking results",
        default=True, type=bool_string)
    return parser.parse_args() 
开发者ID:nwojke,项目名称:deep_sort,代码行数:37,代码来源:deep_sort_app.py

示例3: create_obj_infos

# 需要导入模块: from deep_sort import detection [as 别名]
# 或者: from deep_sort.detection import Detection [as 别名]
def create_obj_infos(cur_frame, final_boxes, final_probs, final_labels,
                     box_feats, targetid2class, tracking_objs, min_confidence,
                     min_detection_height, scale, is_coco_model=False,
                     coco_to_actev_mapping=None):
  obj_infos = []
  tracking_boxes = final_boxes / scale
  for j, (box, prob, label) in enumerate(zip(tracking_boxes, final_probs, final_labels)):
    cat_name = targetid2class[label]
    if is_coco_model:
      if cat_name not in coco_to_actev_mapping:
        continue
      else:
        cat_name = coco_to_actev_mapping[cat_name]

    confidence_socre = float(round(prob, 7))
    if cat_name not in tracking_objs or confidence_socre < min_confidence:
      continue
    box[2] -= box[0]
    box[3] -= box[1]
    avg_feat = box_feats[j]
    if len(avg_feat.shape) > 2:
      avg_feat = np.mean(np.mean(box_feats[j], axis=1), axis=1)


    norm_feat = avg_feat / np.linalg.norm(avg_feat)

    list_feat = norm_feat.tolist()
    bbox_data = [cur_frame, box[0], box[1], box[2], box[3], confidence_socre] + list_feat
    obj_infos.append(bbox_data)

  detections = []
  for row in obj_infos:
    bbox, confidence, feature = row[1:5], row[5], row[6:]
    if bbox[3] < min_detection_height:
      continue
    detections.append(Detection(bbox, confidence, feature))
  return detections


# 1 
开发者ID:JunweiLiang,项目名称:Object_Detection_Tracking,代码行数:42,代码来源:utils.py

示例4: create_detections

# 需要导入模块: from deep_sort import detection [as 别名]
# 或者: from deep_sort.detection import Detection [as 别名]
def create_detections(self, bboxes, feature):
        detections = []
        for box in np.array(bboxes):
            if box is None or len(box) == 0:
                continue
            box[2:4] -= box[:2]
            # too small to do reid
            if box[2] < self.conf.min_width and box[3] < self.conf.min_height:
                continue
            detections.append(Detection(tlwh=box[:4], confidence=box[4], feature=[]))
        return detections 
开发者ID:Kestrong,项目名称:capture_reid,代码行数:13,代码来源:main.py


注:本文中的deep_sort.detection.Detection方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。