本文整理汇总了Python中cv2.threshold方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.threshold方法的具体用法?Python cv2.threshold怎么用?Python cv2.threshold使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.threshold方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: canny
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def canny(filepathname, left=70, right=140):
v = cv2.imread(filepathname)
s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY)
s = cv2.Canny(s, left, right)
cv2.imshow('nier',s)
return s
# 圈出最小方矩形框,这里Canny算法后都是白色线条,所以取色范围 127-255 即可。
# ret, binary = cv2.threshold(s,127,255,cv2.THRESH_BINARY)
# contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# for c in contours:
# x,y,w,h = cv2.boundingRect(c)
# if w>5 and h>10: # 有约束的画框
# cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1)
# # cv2.drawContours(s,contours,-1,(0,0,255),3) # 画所有框
# cv2.imshow('nier2',v)
# cv2.waitKey()
# cv2.destroyAllWindows()
示例2: laplacian
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def laplacian(filepathname):
v = cv2.imread(filepathname)
s = cv2.cvtColor(v, cv2.COLOR_BGR2GRAY)
s = cv2.Laplacian(s, cv2.CV_16S, ksize=3)
s = cv2.convertScaleAbs(s)
cv2.imshow('nier',s)
return s
# ret, binary = cv2.threshold(s,40,255,cv2.THRESH_BINARY)
# contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# for c in contours:
# x,y,w,h = cv2.boundingRect(c)
# if w>5 and h>10:
# cv2.rectangle(v,(x,y),(x+w,y+h),(155,155,0),1)
# cv2.imshow('nier2',v)
# cv2.waitKey()
# cv2.destroyAllWindows()
示例3: segment
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def segment(image, threshold=25):
global bg
# find the absolute difference between background and current frame
diff = cv2.absdiff(bg.astype("uint8"), image)
# threshold the diff image so that we get the foreground
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
# get the contours in the thresholded image
(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return None, if no contours detected
if len(cnts) == 0:
return
else:
# based on contour area, get the maximum contour which is the hand
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
#-----------------
# MAIN FUNCTION
#-----------------
示例4: main
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def main():
capture = cv2.VideoCapture(0)
_, image = capture.read()
previous = image.copy()
while (cv2.waitKey(1) < 0):
_, image = capture.read()
diff = cv2.absdiff(image, previous)
#image = cv2.flip(image, 3)
#image = cv2.norm(image)
_, diff = cv2.threshold(diff, 32, 0, cv2.THRESH_TOZERO)
_, diff = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY)
diff = cv2.medianBlur(diff, 5)
cv2.imshow('video', diff)
previous = image.copy()
capture.release()
cv2.destroyAllWindows()
示例5: prediction
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def prediction(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.GaussianBlur(image, (21, 21), 0)
if self.avg is None:
self.avg = image.copy().astype(float)
cv2.accumulateWeighted(image, self.avg, 0.5)
frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg))
thresh = cv2.threshold(
frameDelta, DELTA_THRESH, 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(
thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
self.avg = image.copy().astype(float)
return cnts
示例6: movement
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def movement(mat_1,mat_2):
mat_1_gray = cv2.cvtColor(mat_1.copy(),cv2.COLOR_BGR2GRAY)
mat_1_gray = cv2.blur(mat_1_gray,(blur1,blur1))
_,mat_1_gray = cv2.threshold(mat_1_gray,100,255,0)
mat_2_gray = cv2.cvtColor(mat_2.copy(),cv2.COLOR_BGR2GRAY)
mat_2_gray = cv2.blur(mat_2_gray,(blur1,blur1))
_,mat_2_gray = cv2.threshold(mat_2_gray,100,255,0)
mat_2_gray = cv2.bitwise_xor(mat_1_gray,mat_2_gray)
mat_2_gray = cv2.blur(mat_2_gray,(blur2,blur2))
_,mat_2_gray = cv2.threshold(mat_2_gray,70,255,0)
mat_2_gray = cv2.erode(mat_2_gray,np.ones((erodeval,erodeval)))
mat_2_gray = cv2.dilate(mat_2_gray,np.ones((4,4)))
_, contours,__ = cv2.findContours(mat_2_gray,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:return True #If there were any movements
return False #if not
#Pedestrian Recognition Thread
示例7: find_squares
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def find_squares(img):
img = cv2.GaussianBlur(img, (5, 5), 0)
squares = []
for gray in cv2.split(img):
for thrs in xrange(0, 255, 26):
if thrs == 0:
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
bin = cv2.dilate(bin, None)
else:
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares
示例8: get_proto_objects_map
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def get_proto_objects_map(self, use_otsu=True):
"""Returns the proto-objects map of an RGB image
This method generates a proto-objects map of an RGB image.
Proto-objects are saliency hot spots, generated by thresholding
the saliency map.
:param use_otsu: flag whether to use Otsu thresholding (True) or
a hardcoded threshold value (False)
:returns: proto-objects map
"""
saliency = self.get_saliency_map()
if use_otsu:
_, img_objects = cv2.threshold(np.uint8(saliency*255), 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
thresh = np.mean(saliency)*255*3
_, img_objects = cv2.threshold(np.uint8(saliency*255), thresh, 255,
cv2.THRESH_BINARY)
return img_objects
示例9: prepare
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def prepare(input):
# preprocessing the image input
clean = cv2.fastNlMeansDenoising(input)
ret, tresh = cv2.threshold(clean, 127, 1, cv2.THRESH_BINARY_INV)
img = crop(tresh)
# 40x10 image as a flatten array
flatten_img = cv2.resize(img, (40, 10), interpolation=cv2.INTER_AREA).flatten()
# resize to 400x100
resized = cv2.resize(img, (400, 100), interpolation=cv2.INTER_AREA)
columns = np.sum(resized, axis=0) # sum of all columns
lines = np.sum(resized, axis=1) # sum of all lines
h, w = img.shape
aspect = w / h
return [*flatten_img, *columns, *lines, aspect]
示例10: find_waves
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def find_waves(threshold, histogram):
up_point = -1#上升点
is_peak = False
if histogram[0] > threshold:
up_point = 0
is_peak = True
wave_peaks = []
for i,x in enumerate(histogram):
if is_peak and x < threshold:
if i - up_point > 2:
is_peak = False
wave_peaks.append((up_point, i))
elif not is_peak and x >= threshold:
is_peak = True
up_point = i
if is_peak and up_point != -1 and i - up_point > 4:
wave_peaks.append((up_point, i))
return wave_peaks
#根据找出的波峰,分隔图片,从而得到逐个字符图片
示例11: process
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def process(eval_img, device='cpu'):
(img, origin, unpadder), file_name = eval_img
with torch.no_grad():
out = model(img.to(device))
prob = F.sigmoid(out)
mask = prob > 0.5
mask = torch.nn.MaxPool2d(kernel_size=(3, 3), padding=(1, 1), stride=1)(mask.float()).byte()
mask = unpadder(mask)
mask = mask.float().cpu()
save_image(mask, file_name + ' _mask.jpg')
origin_np = np.array(to_pil_image(origin[0]))
mask_np = to_pil_image(mask[0]).convert("L")
mask_np = np.array(mask_np, dtype='uint8')
mask_np = draw_bounding_box(origin_np, mask_np, 500)
mask_ = Image.fromarray(mask_np)
mask_.save(file_name + "_contour.jpg")
# ret, mask_np = cv2.threshold(mask_np, 127, 255, 0)
# dst = cv2.inpaint(origin_np, mask_np, 1, cv2.INPAINT_NS)
# out = Image.fromarray(dst)
# out.save(file_name + ' _box.jpg')
示例12: crop_row_detect
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def crop_row_detect(image_in):
save_image('0_image_in', image_in)
### Grayscale Transform ###
image_edit = grayscale_transform(image_in)
save_image('1_image_gray', image_edit)
### Binarization ###
_, image_edit = cv2.threshold(image_edit, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
save_image('2_image_bin', image_edit)
### Stripping ###
crop_points = strip_process(image_edit)
save_image('8_crop_points', crop_points)
### Hough Transform ###
crop_lines = crop_point_hough(crop_points)
save_image('9_image_hough', cv2.addWeighted(image_in, 1, crop_lines, 1, 0.0))
return crop_lines
示例13: skeletonize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def skeletonize(image_in):
'''Inputs and grayscale image and outputs a binary skeleton image'''
size = np.size(image_in)
skel = np.zeros(image_in.shape, np.uint8)
ret, image_edit = cv2.threshold(image_in, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
done = False
while not done:
eroded = cv2.erode(image_edit, element)
temp = cv2.dilate(eroded, element)
temp = cv2.subtract(image_edit, temp)
skel = cv2.bitwise_or(skel, temp)
image_edit = eroded.copy()
zeros = size - cv2.countNonZero(image_edit)
if zeros == size:
done = True
return skel
示例14: blend_non_transparent
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def blend_non_transparent(sprite, background_img):
gray_overlay = cv2.cvtColor(background_img, cv2.COLOR_BGR2GRAY)
overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1]
overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
overlay_mask = cv2.blur(overlay_mask, (3, 3))
background_mask = 255 - overlay_mask
overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR)
background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR)
sprite_part = (sprite * (1 / 255.0)) * (background_mask * (1 / 255.0))
overlay_part = (background_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0))
return np.uint8(cv2.addWeighted(sprite_part, 255.0, overlay_part, 255.0, 0.0))
示例15: sobelOperT
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import threshold [as 别名]
def sobelOperT(self, img, blursize, morphW, morphH):
'''
No different with sobelOper ?
'''
blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT)
if len(blur.shape) == 3:
gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
else:
gray = blur
x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3)
absX = cv2.convertScaleAbs(x)
grad = cv2.addWeighted(absX, 1, 0, 0, 0)
_, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY)
element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH))
threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element)
return threshold