当前位置: 首页>>代码示例>>Python>>正文


Python util.nn方法代码示例

本文整理汇总了Python中baselines.her.util.nn方法的典型用法代码示例。如果您正苦于以下问题:Python util.nn方法的具体用法?Python util.nn怎么用?Python util.nn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在baselines.her.util的用法示例。


在下文中一共展示了util.nn方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from baselines.her import util [as 别名]
# 或者: from baselines.her.util import nn [as 别名]
def __init__(self, inputs_tf, dimo, dimg, dimu, max_u, o_stats, g_stats, hidden, layers,
                 **kwargs):
        """The actor-critic network and related training code.

        Args:
            inputs_tf (dict of tensors): all necessary inputs for the network: the
                observation (o), the goal (g), and the action (u)
            dimo (int): the dimension of the observations
            dimg (int): the dimension of the goals
            dimu (int): the dimension of the actions
            max_u (float): the maximum magnitude of actions; action outputs will be scaled
                accordingly
            o_stats (baselines.her.Normalizer): normalizer for observations
            g_stats (baselines.her.Normalizer): normalizer for goals
            hidden (int): number of hidden units that should be used in hidden layers
            layers (int): number of hidden layers
        """
        self.o_tf = inputs_tf['o']
        self.g_tf = inputs_tf['g']
        self.u_tf = inputs_tf['u']

        # Prepare inputs for actor and critic.
        o = self.o_stats.normalize(self.o_tf)
        g = self.g_stats.normalize(self.g_tf)
        input_pi = tf.concat(axis=1, values=[o, g])  # for actor

        # Networks.
        with tf.variable_scope('pi'):
            self.pi_tf = self.max_u * tf.tanh(nn(
                input_pi, [self.hidden] * self.layers + [self.dimu]))
        with tf.variable_scope('Q'):
            # for policy training
            input_Q = tf.concat(axis=1, values=[o, g, self.pi_tf / self.max_u])
            self.Q_pi_tf = nn(input_Q, [self.hidden] * self.layers + [1])
            # for critic training
            input_Q = tf.concat(axis=1, values=[o, g, self.u_tf / self.max_u])
            self._input_Q = input_Q  # exposed for tests
            self.Q_tf = nn(input_Q, [self.hidden] * self.layers + [1], reuse=True) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:40,代码来源:actor_critic.py


注:本文中的baselines.her.util.nn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。