当前位置: 首页>>代码示例>>Python>>正文


Python AttributeDict.preprocessing方法代码示例

本文整理汇总了Python中utils.AttributeDict.preprocessing方法的典型用法代码示例。如果您正苦于以下问题:Python AttributeDict.preprocessing方法的具体用法?Python AttributeDict.preprocessing怎么用?Python AttributeDict.preprocessing使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils.AttributeDict的用法示例。


在下文中一共展示了AttributeDict.preprocessing方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: doPreprocessing

# 需要导入模块: from utils import AttributeDict [as 别名]
# 或者: from utils.AttributeDict import preprocessing [as 别名]
    def doPreprocessing(self):
        results = AttributeDict()
        results.dataset = []
        for i in range(len(self.params.dataset)):
            # shall we just load it?
            filename = '%s/preprocessing-%s%s.mat' % (self.params.dataset[i].savePath, self.params.dataset[i].saveFile, self.params.saveSuffix)
            if self.params.dataset[i].preprocessing.load and os.path.isfile(filename):         
                r = loadmat(filename)
                print('Loading file %s ...' % filename)
                results.dataset[i].preprocessing = r.results_preprocessing
            else:
                # or shall we actually calculate it?
                p = deepcopy(self.params)    
                p.dataset = self.params.dataset[i]
                d = AttributeDict()
                d.preprocessing = np.copy(SeqSLAM.preprocessing(p))
                results.dataset.append(d)
    
                if self.params.dataset[i].preprocessing.save:
                    results_preprocessing = results.dataset[i].preprocessing
                    savemat(filename, {'results_preprocessing': results_preprocessing})

        return results
开发者ID:breezeflutter,项目名称:pySeqSLAM,代码行数:25,代码来源:seqslam.py

示例2: demo

# 需要导入模块: from utils import AttributeDict [as 别名]
# 或者: from utils.AttributeDict import preprocessing [as 别名]
def demo():

    # set the parameters

    # start with default parameters
    params = defaultParameters()    
    
    # Nordland spring dataset
    ds = AttributeDict()
    ds.name = 'spring'
    
    try:
        path = os.environ['DATASET_1_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/spring'
        print "Warning: Environment variable DATASET_1_PATH not found! Trying '"+path+"'"
    ds.imagePath = path
    
    ds.prefix='images-'
    ds.extension='.png'
    ds.suffix=''
    ds.imageSkip = 100     # use every n-nth image
    ds.imageIndices = range(1, 35700, ds.imageSkip)    
    ds.savePath = 'results'
    ds.saveFile = '%s-%d-%d-%d' % (ds.name, ds.imageIndices[0], ds.imageSkip, ds.imageIndices[-1])
    
    ds.preprocessing = AttributeDict()
    ds.preprocessing.save = 1
    ds.preprocessing.load = 0 #1
    #ds.crop=[1 1 60 32]  # x0 y0 x1 y1  cropping will be done AFTER resizing!
    ds.crop=[]
    
    spring=ds

    ds2 = deepcopy(ds)
    # Nordland winter dataset
    ds2.name = 'winter'
    #ds.imagePath = '../datasets/nordland/64x32-grayscale-1fps/winter'
    try:
        path = os.environ['DATASET_2_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/winter'
        print "Warning: Environment variable DATASET_2_PATH not found! Trying '"+path+"'"
    ds2.saveFile = '%s-%d-%d-%d' % (ds2.name, ds2.imageIndices[0], ds2.imageSkip, ds2.imageIndices[-1])
    # ds.crop=[5 1 64 32]
    ds2.crop=[]
    
    winter=ds2      

    params.dataset = [spring, winter]

    # load old results or re-calculate?
    params.differenceMatrix.load = 0
    params.contrastEnhanced.load = 0
    params.matching.load = 0
    
    # where to save / load the results
    params.savePath='results'
              
    ## now process the dataset
    ss = SeqSLAM(params)  
    t1=time.time()
    results = ss.run()
    t2=time.time()          
    print "time taken: "+str(t2-t1)
    
    ## show some results
    if len(results.matches) > 0:
        m = results.matches[:,0] # The LARGER the score, the WEAKER the match.
        thresh=0.9  # you can calculate a precision-recall plot by varying this threshold
        m[results.matches[:,1]>thresh] = np.nan # remove the weakest matches
        plt.plot(m,'.')      # ideally, this would only be the diagonal
        plt.title('Matchings')   
        plt.show()    
    else:
        print "Zero matches"          
开发者ID:breezeflutter,项目名称:pySeqSLAM,代码行数:78,代码来源:demo.py


注:本文中的utils.AttributeDict.preprocessing方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。