本文整理汇总了Python中utils.AttributeDict.m方法的典型用法代码示例。如果您正苦于以下问题:Python AttributeDict.m方法的具体用法?Python AttributeDict.m怎么用?Python AttributeDict.m使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.AttributeDict
的用法示例。
在下文中一共展示了AttributeDict.m方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: apply_tagger
# 需要导入模块: from utils import AttributeDict [as 别名]
# 或者: from utils.AttributeDict import m [as 别名]
def apply_tagger(self, x, apply_noise, y=None):
""" Build one path of Tagger """
mb_size = x.shape[1]
input_shape = (self.p.n_groups, mb_size) + self.in_dim
in_dim = np.prod(self.in_dim)
# Add noise
x_corr = self.corrupt(x) if apply_noise else x
# Repeat input
x_corr = T.repeat(x_corr, self.p.n_groups, 0)
# Compute v
if self.p.input_type == 'binary':
v = None
elif self.p.input_type == 'continuous':
v = self.weight(1., 'v')
v = v * T.alloc(1., *input_shape)
# Cap to positive range
v = nn.exp_inv_sinh(v)
d = AttributeDict()
if y:
d.pred = []
d.class_error, d.class_cost = [], []
# here we have the book-keeping of z and m for the visualizations.
d.z = []
d.m = []
else:
d.denoising_cost, d.ami_score, d.ami_score_per_sample = [], [], []
assert self.p.n_iterations >= 1
# z_hat is the value for the next iteration of tagger.
# z is the current iteration tagger input
# m is the current iteration mask input
# m_hat is the value for the next iteration of tagger.
# m_lh is the mask likelihood.
# z_delta is the gradient of z, which depends on x, z and m.
for step in xrange(self.p.n_iterations):
# Encoder
# =======
# Compute m, z and z_hat_pre_bin
if step == 0:
# No values from previous iteration, so let's make them up
m, z = self.init_m_z(input_shape)
z_hat_pre_bin = None
# let's keep in the bookkeeping for the visualizations.
if y:
d.z.append(z)
d.m.append(m)
else:
# Feed in the previous iteration's estimates
z = z_hat
m = m_hat
# Compute m_lh
m_lh = self.m_lh(x_corr, z, v)
z_delta = self.f_z_deriv(x_corr, z, m)
z_tilde = z_hat_pre_bin if z_hat_pre_bin is not None else z
# Concatenate all inputs
inputs = [z_tilde, z_delta, m, m_lh]
inputs = T.concatenate(inputs, axis=2)
# Projection, batch-normalization and activation to a hidden layer
z = self.proj(inputs, in_dim * 4, self.p.encoder_proj[0])
z -= z.mean((0, 1), keepdims=True)
z /= T.sqrt(z.var((0, 1), keepdims=True) + np.float32(1e-10))
z += self.bias(0.0 * np.ones(self.p.encoder_proj[0]), 'b')
h = self.apply_act(z, 'relu')
# The first dimension is the group. Let's flatten together with
# minibatch in order to have parametric mapping compute all groups
# in parallel
h, undo_flatten = flatten_first_two_dims(h)
# Parametric Mapping
# ==================
self.ladder.apply(None, self.y, h)
ladder_encoder_output = undo_flatten(self.ladder.act.corr.unlabeled.h[len(self.p.encoder_proj) - 1])
ladder_decoder_output = undo_flatten(self.ladder.act.est.z[0])
# Decoder
# =======
# compute z_hat
z_u = self.proj(ladder_decoder_output, self.p.encoder_proj[0], in_dim, scope='z_u')
z_u -= z_u.mean((0, 1), keepdims=True)
z_u /= T.sqrt(z_u.var((0, 1), keepdims=True) + np.float32(1e-10))
z_hat = self.weight(np.ones(in_dim), 'c1') * z_u + self.bias(np.zeros(in_dim), 'b1')
z_hat = z_hat.reshape(input_shape)
# compute m_hat
#.........这里部分代码省略.........