当前位置: 首页>>代码示例>>Python>>正文


Python cfg.RNG_SEED属性代码示例

本文整理汇总了Python中detectron.core.config.cfg.RNG_SEED属性的典型用法代码示例。如果您正苦于以下问题:Python cfg.RNG_SEED属性的具体用法?Python cfg.RNG_SEED怎么用?Python cfg.RNG_SEED使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在detectron.core.config.cfg的用法示例。


在下文中一共展示了cfg.RNG_SEED属性的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from detectron.core.config import cfg [as 别名]
# 或者: from detectron.core.config.cfg import RNG_SEED [as 别名]
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info()
    logger.info("cuda version : {}".format(cuda_ver))
    logger.info("cudnn version: {}".format(cudnn_ver))
    logger.info("nvidia-smi output:\n{}".format(smi_output))
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # Execute the training run
    checkpoints = detectron.utils.train.train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.single_gpu_testing, args.opts) 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:34,代码来源:train_net.py

示例2: main

# 需要导入模块: from detectron.core.config import cfg [as 别名]
# 或者: from detectron.core.config.cfg import RNG_SEED [as 别名]
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info()
    logger.info("cuda version : {}".format(cuda_ver))
    logger.info("cudnn version: {}".format(cudnn_ver))
    logger.info("nvidia-smi output:\n{}".format(smi_output))
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # Execute the training run
    checkpoints = detectron.utils.train.train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.multi_gpu_testing, args.opts) 
开发者ID:fyangneil,项目名称:Clustered-Object-Detection-in-Aerial-Image,代码行数:34,代码来源:train_net.py


注:本文中的detectron.core.config.cfg.RNG_SEED属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。