当前位置: 首页>>代码示例>>Python>>正文


Python cv2.COLORMAP_BONE属性代码示例

本文整理汇总了Python中cv2.COLORMAP_BONE属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.COLORMAP_BONE属性的具体用法?Python cv2.COLORMAP_BONE怎么用?Python cv2.COLORMAP_BONE使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在cv2的用法示例。


在下文中一共展示了cv2.COLORMAP_BONE属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: heatmap

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_BONE [as 别名]
def heatmap(map):
    map = (map*255).astype(np.uint8)
    return cv2.applyColorMap(map, cv2.COLORMAP_BONE) 
开发者ID:asanakoy,项目名称:kaggle_carvana_segmentation,代码行数:5,代码来源:utils.py

示例2: tensor2array

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_BONE [as 别名]
def tensor2array(tensor, max_value=None, colormap='rainbow'):
    if max_value is None:
        tensor=(tensor-tensor.min())/(tensor.max()-tensor.min()+1e-6)
        max_value = tensor.max().item()
    if tensor.ndimension() == 2 or tensor.size(0) == 1:
        try:
            import cv2
            if cv2.__version__.startswith('3'):
                color_cvt = cv2.COLOR_BGR2RGB
            else:  # 2.4
                color_cvt = cv2.cv.CV_BGR2RGB
            if colormap == 'rainbow':
                colormap = cv2.COLORMAP_RAINBOW
            elif colormap == 'bone':
                colormap = cv2.COLORMAP_BONE
            array = (tensor.squeeze().numpy()*255./max_value).clip(0, 255).astype(np.uint8)
            colored_array = cv2.applyColorMap(array, colormap)
            array = cv2.cvtColor(colored_array, color_cvt).astype(np.float32)/255
        except ImportError:
            if tensor.ndimension() == 2:
                tensor.unsqueeze_(2)
            array = (tensor.expand(tensor.size(0), tensor.size(1), 3).numpy()/max_value).clip(0,1)

    elif tensor.ndimension() == 3:
        assert(tensor.size(0) == 3)
        array = 0.5 + tensor.numpy().transpose(1, 2, 0)*0.5

    #for tensorboardx 1.4
    #array=array.transpose(2,0,1)

    return array 
开发者ID:yechengxi,项目名称:deconvolution,代码行数:33,代码来源:util.py

示例3: tensor2array

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_BONE [as 别名]
def tensor2array(tensor, max_value=255, colormap='rainbow'):
    if max_value is None:
        max_value = tensor.max()
    if tensor.ndimension() == 2 or tensor.size(0) == 1:
        try:
            import cv2
            if cv2.__version__.startswith('2'): # 2.4
                color_cvt = cv2.cv.CV_BGR2RGB
            else:  
                color_cvt = cv2.COLOR_BGR2RGB
            if colormap == 'rainbow':
                colormap = cv2.COLORMAP_RAINBOW
            elif colormap == 'bone':
                colormap = cv2.COLORMAP_BONE
            array = (255*tensor.squeeze().numpy()/max_value).clip(0, 255).astype(np.uint8)
            colored_array = cv2.applyColorMap(array, colormap)
            array = cv2.cvtColor(colored_array, color_cvt).astype(np.float32)/255
            #array = array.transpose(2, 0, 1)
        except ImportError:
            if tensor.ndimension() == 2:
                tensor.unsqueeze_(2)
            array = (tensor.expand(tensor.size(0), tensor.size(1), 3).numpy()/max_value).clip(0,1)

    elif tensor.ndimension() == 3:
        #assert(tensor.size(0) == 3)
        #array = 0.5 + tensor.numpy()*0.5
        array = 0.5 + tensor.numpy().transpose(1,2,0)*0.5
    return array 
开发者ID:sunghoonim,项目名称:DPSNet,代码行数:30,代码来源:utils.py

示例4: get_visualization

# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import COLORMAP_BONE [as 别名]
def get_visualization(img_list, label_list, ms_vect, ms_prob, ds=6, idx=0):
    dim = ms_vect[0].size(1)
    H, W = img_list[0].size()[2:]
    with torch.no_grad():
        raw_img0 = _recover_img(img_list[0][idx].data)
        raw_img1 = _recover_img(img_list[1][idx].data)
        for l in range(len(ms_vect)):
            # image
            vis_list = [raw_img0, raw_img1]

            # ground-truth flow
            gt_flo, valid_mask = downsample_flow(label_list[0],
                                                 1 / 2**(ds - l))
            gt_flo = F.interpolate(gt_flo, (H, W), mode='nearest')[idx]
            valid_mask = F.interpolate(valid_mask, (H, W), mode='nearest')[idx]
            max_mag1 = torch.max(torch.norm(gt_flo, 2, 0))

            # predicted flow
            pred_flo = ms_vect[l]
            if dim == 1:
                pred_flo = disp2flow(pred_flo)
            pred_flo = F.interpolate(pred_flo, (H, W), mode='nearest')[idx]
            max_mag2 = torch.max(torch.norm(pred_flo, 2, 0))

            max_mag = max(float(max_mag1), float(max_mag2))
            vis_list.append(_flow_to_img(gt_flo, max_mag))
            vis_list.append(_flow_to_img(pred_flo, max_mag))

            # epe error visualization
            epe_error = torch.norm(
                pred_flo - gt_flo, 2, 0, keepdim=False) * valid_mask[0, :, :]
            normalizer = max(torch.max(epe_error), 1)
            epe_error = 1 - epe_error / normalizer
            vis_list.append(_visualize_heat(epe_error))

            # confidence map visualization
            prob = ms_prob[l].data
            prob = prob_gather(prob, normalize=True, dim=dim)
            if prob.size(2) != H or prob.size(3) != W:
                prob = F.interpolate(prob, (H, W), mode='nearest')
            vis_list.append(
                _visualize_heat(prob[idx].squeeze(), cv2.COLORMAP_BONE))

            vis = torch.cat(vis_list, dim=2)
            if l == 0:
                ms_vis = vis
            else:
                ms_vis = torch.cat([ms_vis, vis], dim=1)

        return ms_vis.unsqueeze(0) 
开发者ID:ucbdrive,项目名称:hd3,代码行数:52,代码来源:visualizer.py


注:本文中的cv2.COLORMAP_BONE属性示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。