本文整理汇总了Python中cv2.CC_STAT_AREA属性的典型用法代码示例。如果您正苦于以下问题:Python cv2.CC_STAT_AREA属性的具体用法?Python cv2.CC_STAT_AREA怎么用?Python cv2.CC_STAT_AREA使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类cv2
的用法示例。
在下文中一共展示了cv2.CC_STAT_AREA属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_mean_cell_size
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CC_STAT_AREA [as 别名]
def get_mean_cell_size(mask_contours):
nuclei_sizes = []
for mask_contour in mask_contours:
mask = mask_contour[:,:,0]
contour = mask_contour[:,:,1]
new_mask = (mask*255).astype(np.uint8)
new_contour = (contour*255).astype(np.uint8)
true_foreground = cv2.subtract(new_mask, new_contour)
output = cv2.connectedComponentsWithStats(true_foreground)
nuclei_sizes.append(np.mean(output[2][1:,cv2.CC_STAT_AREA]))
return nuclei_sizes
示例2: obj_histogram
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CC_STAT_AREA [as 别名]
def obj_histogram(self, mask, label):
# holders for predicted object and right object (easily calculate histogram)
predicted = []
labeled = []
# get connected components in label for each class
for i in range(self.num_classes):
# get binary image for this class
bin_lbl = np.zeros(label.shape)
bin_lbl[label == i] = 1
bin_lbl[label != i] = 0
# util.im_gray_plt(bin_lbl,'class '+str(i))
connectivity = 4
output = cv2.connectedComponentsWithStats(
bin_lbl.astype(np.uint8), connectivity, cv2.CV_32S)
num_components = output[0]
components = output[1]
stats = output[2]
centroids = output[3]
for j in range(1, num_components): # 0 is background (useless)
# only process if it has more than 50pix
if stats[j][cv2.CC_STAT_AREA] > 50:
# for each component in each class, see the class with the highest percentage of pixels
# make mask with just this component of this class
comp_mask = np.zeros(label.shape)
comp_mask[components == j] = 0
comp_mask[components != j] = 1
# mask the prediction
masked_prediction = np.ma.masked_array(mask, mask=comp_mask)
# get histogram and get the argmax that is not zero
class_hist, _ = np.histogram(masked_prediction.compressed(),
bins=self.num_classes, range=[0, self.num_classes])
max_class = np.argmax(class_hist)
# print("\nMax class: ",max_class," real: ",i)
# util.im_gray_plt(comp_mask)
# util.im_block()
# sum an entry to the containers depending on right or wrong
predicted.append(max_class)
labeled.append(i)
# for idx in range(len(predicted)):
# print(predicted[idx],labeled[idx])
# histogram to count right and wrong objects
histrange = np.array([[-0.5, self.num_classes - 0.5],
[-0.5, self.num_classes - 0.5]], dtype='float64')
h_now, _, _ = np.histogram2d(np.array(predicted),
np.array(labeled),
bins=self.num_classes,
range=histrange)
return h_now
示例3: getDetBoxes_core
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CC_STAT_AREA [as 别名]
def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
# prepare data
linkmap = linkmap.copy()
textmap = textmap.copy()
img_h, img_w = textmap.shape
""" labeling method """
ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
text_score_comb = np.clip(text_score + link_score, 0, 1)
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)
det = []
mapper = []
for k in range(1,nLabels):
# size filtering
size = stats[k, cv2.CC_STAT_AREA]
if size < 10: continue
# thresholding
if np.max(textmap[labels==k]) < text_threshold: continue
# make segmentation map
segmap = np.zeros(textmap.shape, dtype=np.uint8)
segmap[labels==k] = 255
segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
# boundary check
if sx < 0 : sx = 0
if sy < 0 : sy = 0
if ex >= img_w: ex = img_w
if ey >= img_h: ey = img_h
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
# make box
np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
rectangle = cv2.minAreaRect(np_contours)
box = cv2.boxPoints(rectangle)
# align diamond-shape
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
box_ratio = max(w, h) / (min(w, h) + 1e-5)
if abs(1 - box_ratio) <= 0.1:
l, r = min(np_contours[:,0]), max(np_contours[:,0])
t, b = min(np_contours[:,1]), max(np_contours[:,1])
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
# make clock-wise order
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4-startidx, 0)
box = np.array(box)
det.append(box)
mapper.append(k)
return det, labels, mapper
示例4: post_process_image
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import CC_STAT_AREA [as 别名]
def post_process_image(image, mask, contour):
""" Watershed on the markers generated on the sure foreground to find all disconnected objects
The (mask - contour) is the true foreground. We set the contour to be unknown area.
Index of contour = -1
Index of unkown area = 0
Index of background = 1 -> set back to 0 after watershed
Index of found objects > 1
"""
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
new_contour = (contour*255).astype(np.uint8)
new_mask = (mask*255).astype(np.uint8)
new_mask = cv2.morphologyEx(new_mask, cv2.MORPH_OPEN, kernel, iterations=1)
_, thresh_mask = cv2.threshold(new_mask,0,255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, thresh_contour = cv2.threshold(new_contour,0,255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
sure_background = cv2.dilate(thresh_mask,kernel,iterations=3)
sure_foreground = cv2.subtract(thresh_mask, thresh_contour)
mask_plus_contour = cv2.add(thresh_mask, thresh_contour)
mask_plus_contour = cv2.cvtColor(mask_plus_contour, cv2.COLOR_GRAY2RGB)
unknown = cv2.subtract(sure_background, sure_foreground)
# Marker labelling
output = cv2.connectedComponentsWithStats(sure_foreground)
labels = output[1]
stats = output[2]
# Add one to all labels so that sure background is not 0, 0 is considered unknown by watershed
# this way, watershed can distinguish unknown from the background
labels = labels + 1
labels[unknown==255] = 0
try:
# random walker on thresh_mask leads a lot higher mean IoU but lower LB
#labels = random_walker(thresh_mask, labels)
# random walker on thresh_mask leads lower mean IoU but higher LB
labels = random_walker(mask_plus_contour, labels, multichannel=True)
except:
labels = cv2.watershed(mask_plus_contour, labels)
labels[labels==-1] = 0
labels[labels==1] = 0
labels = labels -1
labels[labels==-1] = 0
# discard nuclei which are too big or too small
mean = np.mean(stats[1:,cv2.CC_STAT_AREA])
for i in range(1, labels.max()):
if stats[i, cv2.CC_STAT_AREA] > mean*10 or stats[i, cv2.CC_STAT_AREA] < mean/10:
labels[labels==i] = 0
labels = renumber_labels(labels)
return labels