本文整理汇总了Java中org.grouplens.lenskit.vectors.MutableSparseVector.set方法的典型用法代码示例。如果您正苦于以下问题:Java MutableSparseVector.set方法的具体用法?Java MutableSparseVector.set怎么用?Java MutableSparseVector.set使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.grouplens.lenskit.vectors.MutableSparseVector
的用法示例。
在下文中一共展示了MutableSparseVector.set方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Generate item scores personalized for a particular user. For the TFIDF scorer, this will
* prepare a user profile and compare it to item tag vectors to produce the score.
*
* @param user The user to score for.
* @param output The output vector. The contract of this method is that the caller creates a
* vector whose possible keys are all items that should be scored; this method
* fills in the scores.
*/
@Override
public void score(long user, @Nonnull MutableSparseVector output) {
// Get the user's profile, which is a vector with their 'like' for each tag
SparseVector userVector = makeUserVector(user);
// Loop over each item requested and score it.
// The *domain* of the output vector is the items that we are to score.
for (VectorEntry e: output.fast(VectorEntry.State.EITHER)) {
// Score the item represented by 'e'.
// Get the item vector for this item
SparseVector iv = model.getItemVector(e.getKey());
double similarity = iv.dot(userVector)/(iv.norm()*userVector.norm());
output.set(e.getKey(), similarity);
// DA FARE Compute the cosine of this item and the user's profile, store it in the output vector
}
}
示例2: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Generate item scores personalized for a particular user. For the TFIDF scorer, this will
* prepare a user profile and compare it to item tag vectors to produce the score.
*
* @param user The user to score for.
* @param output The output vector. The contract of this method is that the caller creates a
* vector whose possible keys are all items that should be scored; this method
* fills in the scores.
*/
@Override
public void score(long user, @Nonnull MutableSparseVector output) {
// Get the user's profile, which is a vector with their 'like' for each tag
SparseVector userVector = makeUserVector(user);
// Loop over each item requested and score it.
// The *domain* of the output vector is the items that we are to score.
for (VectorEntry e: output.fast(VectorEntry.State.EITHER)) {
// Score the item represented by 'e'.
// Get the item vector for this item
SparseVector iv = model.getItemVector(e.getKey());
double similarity = iv.dot(userVector)/(iv.norm()*userVector.norm());
output.set(e.getKey(), similarity);
// DA FARE Compute the cosine of this item and the user's profile, store it in the output vector
}
}
示例3: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Score items in a vector. The key domain of the provided vector is the
* items to score, and the score method sets the values for each item to its
* score (or unsets it, if no score can be provided). The previous values
* are discarded.
*
* @param user
* The user ID.
* @param scores
* The score vector.
*/
@Override
public void score(long user, @Nonnull MutableSparseVector scores) {
// P = b + U.S.Vt
if (model.getUserVector(user) == null) {
scores.clear();
} else {
RealMatrix U = model.getUserVector(user);
RealMatrix S = model.getFeatureWeights();
for (VectorEntry e : scores.fast(VectorEntry.State.EITHER)) {
long item = e.getKey();
RealMatrix V = model.getItemVector(item);
scores.set(item,
baselineScorer.score(user, item)
+ (U.multiply(S)).multiply(V.transpose())
.getEntry(0, 0));
}
}
}
示例4: globalScore
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Score items with respect to a set of reference items.
*
* @param items
* The reference items.
* @param scores
* The score vector. Its domain is the items to be scored, and the scores should be stored into this vector.
*/
@Override
public void globalScore(@Nonnull Collection<Long> items, @Nonnull MutableSparseVector scores) {
scores.fill(0);
// each item's score is the sum of its similarity to each item in items, if they are
// neighbors in the model.
for (VectorEntry e : scores.fast(VectorEntry.State.EITHER)) {
long item = e.getKey();
List<ScoredId> neighbors = model.getNeighbors(item);
double sumScore = 0;
for (ScoredId thisNghbr : neighbors) {
if (items.contains(thisNghbr.getId()))
sumScore += thisNghbr.getScore();
}
scores.set(item, sumScore);
}
}
开发者ID:rohitsinha54,项目名称:Coursera-Introduction-to-Recommender-Systems-Programming-Assignment-5,代码行数:26,代码来源:SimpleGlobalItemScorer.java
示例5: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Score items for a user.
* @param user The user ID.
* @param scores The score vector. Its key domain is the items to score, and the scores
* (rating predictions) should be written back to this vector.
*/
@Override
public void score(long user, @Nonnull MutableSparseVector scores) {
SparseVector ratings = getUserRatingVector(user);
for (VectorEntry e: scores.fast(VectorEntry.State.EITHER)) {
long item = e.getKey();
List<ScoredId> neighbors = model.getNeighbors(item);
int nghbrCount = 0;
double numerator = 0, denominator = 0;
for(ScoredId thisNghbr : neighbors){
if(nghbrCount < neighborhoodSize){
if (!ratings.containsKey(thisNghbr.getId())) continue;
double thisItemRating = ratings.get(thisNghbr.getId());
double thisItemSimilarity = thisNghbr.getScore();
numerator += thisItemRating * thisItemSimilarity;
denominator += thisItemSimilarity;
nghbrCount++;
}
}
scores.set(item, numerator/denominator);
}
}
开发者ID:rohitsinha54,项目名称:Coursera-Introduction-to-Recommender-Systems-Programming-Assignment-5,代码行数:31,代码来源:SimpleItemItemScorer.java
示例6: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
@Override
public void score(long user, @Nonnull MutableSparseVector scores) {
SparseVector userVector = getUserRatingVector(user);
// TODO Score items for this user using user-user collaborative filtering
// This is the loop structure to iterate over items to score
for (VectorEntry e: scores.fast(VectorEntry.State.EITHER)) {
long itemid = e.getKey();
//Weird method to get the top30 Please Ignore
TreeMap<Double, Long> simMap = new TreeMap<Double, Long>();
for (long uid: itemDao.getUsersForItem(itemid)){
if (user != uid){
simMap.put(-getUserUserSimilarity(user,uid),uid);
}
}
int counter=0;
double simscore = 0.0;
double simsum = 0.0;
for(Map.Entry<Double,Long> ent:simMap.entrySet()){
double sim = -ent.getKey();
long userid = ent.getValue();
simsum+=Math.abs(sim);
simscore+= sim* (getUserRatingVector(userid).get(itemid)- getUserRatingVector(userid).mean());
counter++;
if(counter>=30) break;
}
double result = simscore / simsum +userVector.mean();
scores.set(e,result);
}
}
开发者ID:4DD8A19D69F5324F9D49D17EF78BBBCC,项目名称:Introd_uction_to_Recom_mander_S_ystem,代码行数:40,代码来源:SimpleUserUserItemScorer.java
示例7: globalScore
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Score items with respect to a set of reference items.
* @param items The reference items.
* @param scores The score vector. Its domain is the items to be scored, and the scores should
* be stored into this vector.
*/
@Override
public void globalScore(@Nonnull Collection<Long> items, @Nonnull MutableSparseVector scores) {
scores.fill(0);
// score items in the domain of scores
for (VectorEntry e: scores.fast(VectorEntry.State.EITHER)) {
// each item's score is the sum of its similarity to each item in items, if they are
// neighbors in the model.
long itemId = e.getKey();
// getting neighbors
List<ScoredId> neighbors = model.getNeighbors(itemId);
Map<Long, Double> neighMap = new HashMap<Long, Double>();
for (ScoredId scoredId : neighbors) {
neighMap.put(scoredId.getId(), scoredId.getScore());
}
// scoring similarity
double score = 0.0;
for(Long basketItem: items){
Double similarity = 0.0;
if(neighMap.containsKey(basketItem)) similarity = neighMap.get(basketItem);
score += similarity;
}
// asserting score
scores.set(e, score);
}
}
示例8: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
/**
* Calculate the predicted scores of a set of items for the input user
*/
@Override
public void score(long user, @Nonnull MutableSparseVector scores) {
SparseVector userVector = getUserRatingVector(user);
for (long itemToScore : scores.keyDomain()) {
double predictedRating = 0.0;
double weight = 0.0;
LongSet Neighbors = getTopNeighbours(user, itemToScore);
//For each neighbor increment the predicted score
for (Long neighbor : Neighbors) {
SparseVector neighbourVector = getUserRatingVector(neighbor);
double neighbourMeanRating = neighbourVector.mean();
double neighbourRating = neighbourVector.get(itemToScore);
double offsetFromMean = neighbourRating - neighbourMeanRating;
double similarity = similarityMap.get(neighbor);
predictedRating = predictedRating + offsetFromMean*similarity;
weight = weight + Math.abs(similarity);
}
//Divide by total weight
predictedRating = predictedRating/weight + userVector.mean();
scores.set(itemToScore, predictedRating);
}
}
示例9: entropy
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
private double entropy(TagVocabulary vocab, ItemTagDAO tagDAO, List<ScoredId> recommendations) {
MutableSparseVector tagProbs = tagProbabilities(vocab, tagDAO, recommendations);
MutableSparseVector logProbs = MutableSparseVector.create(tagProbs.keyDomain());
for (VectorEntry entry : logProbs.fast(State.UNSET)) {
long tagid = entry.getKey();
double probability = tagProbs.get(tagid);
double logprob = Math.log(probability) / Math.log(2);
logProbs.set(entry, logprob);
}
return -1.0 * logProbs.dot(tagProbs);
}
示例10: score
import org.grouplens.lenskit.vectors.MutableSparseVector; //导入方法依赖的package包/类
@Override
public void score(long l, @Nonnull MutableSparseVector vectorEntries) {
vectorEntries.set(itemPopularity);
}